Influence of function nodes on automated
generation of routing policies with genetic
programming
Marko Durasevi¢! and Francisco Javier Gil Gala® *

1- Faculty of Electrical Engineering and Computing, University of Zagreb
Unska 3, 10000 Zagreb - Croatia

2- Department of Computer Science, University of Oviedo
Gijon - Spain

Abstract. Routing policies (RPs) are simple heuristics used to solve
the electric vehicle routing problem, suitable for large or dynamic prob-
lems. Designing efficient RPs is difficult, because of which researchers
started applying genetic programming (GP) for their automated develop-
ment. For GP to be able to generate efficient RPs, it must be supplied
with appropriate building blocks, i.e., functions and problem features, to
construct the solution. This study investigates the selection of appropriate
function nodes to construct RPs. The experiments demonstrate that the
best results are obtained when using the most simple arithmetic operators
enhanced with some additional operators.

1 Introduction

Routing policies (RPs) are simple heuristic methods that are used to solve nu-
merous variants of the vehicle routing problem [1]. These RPs construct the
solution incrementally, by determining the next decision that should be selected
and executed. In that way they do not construct the entire solution, but rather
only determine the next state of the system. This makes them suitable in gener-
ating solutions for large, dynamic, or uncertain problems, since they can always
take the latest information into account when performing the decisions.

However, manually designing RPs is a quite tedious and time consuming
task which requires expert knowledge about the problem domain. For that pur-
pose, genetic programming (GP) has often been used to automatically designing
heuristics for various combinatorial optimisation problems [2, 3]. Until now,
this methodology has proven to be quite efficient in designing new and efficient
heuristics for various vehicle routing problems [4, 5].

One of the most important decisions when using GP to design heuristics
is which building blocks, i.e., function and terminal nodes, should be used to
construct the solution. These two sets define the expressiveness of the poten-
tial solution. Although the selection of terminal nodes is commonly investi-
gated, function nodes are usually selected based on previous experience or rule

*This research has been supported by the European Union - NextGenerationEU under the
grant NPOO.C3.2.R2-11.06.0110., by the Croatian Science Foundation under the project IP-
2022-10-5398, and the Spanish Government under projects MCINN-23-PID2022 and TED2021-
131938B-100.



of thumb. Therefore, in this study we investigate the effect of various function
node sets on the quality of the RPs that are generated by GP for the Electric
Vehicle Routing Problem with Time Windows (EVRPTW) [6].

2 Electric Vehicle Routing Problem

EVRPTW is modelled as a symmetrical fully connected graph, where nodes
represent customers, depots, or charging station, and edge weights represent the
distances between the different nodes. Each customer has a certain demand that
needs to be satisfied, a service time that defines the amount of time required
to serve the customer, and a time window that defines during which time the
service can start. In order to serve the customers, a certain number of electric
vehicles is available, each with a cargo capacity, battery level, and speed. As
the vehicle traverses an edge the energy level of the battery is reduced, and as
the vehicle visits a customer the cargo capacity is also reduced. At the start all
the vehicles are located at the depot, to which they also need to return when
they complete their routes. As the battery levels of the vehicles diminish, the
vehicles can visit charging stations to recharge their battery. In this problem
variant it is presumed that the battery is recharged until 100%, with the time
required to recharge it linearly depending on the amount that was recharged.
In the considered problem, the fleet consists of homogeneous vehicles, meaning
that all of them have the same characteristics. The optimisation criterion that is
minimised in this problems is first the number of vehicles, and then the lateness.
The lateness is defined as the amount of time that the vehicle arrived at the
customers after the end of the time window. To optimise both objectives the
fitness function is defined as:f(x) = ¢ x V(z) + L(x), where f(z) denotes the
total fitness of solution x, V' denotes the number of used vehicles, ¢ denotes a
user defined scaling parameter, and L denotes the total lateness of vehicles in
solution z. In this study ¢ = 10° to primarily focus on optimising the number
of vehicles, and then the lateness.

3 Automated Design of RPs

A RP consists of two parts, the routing scheme (RS) and the priority function
(PF). The RS defines how the solution is being constructed. This means that
at each decision moment, which happens when a vehicle becomes available, it
determines the next customer that should be served. In order to determine which
customer should be visited, the RS ranks all the customers and selects the best
one as the one that should be visited next. In order to obtain the ranking of all
customer, the RS uses a PF which assigns a numeric value to all the decisions,
based on which the best one can be selected.

The PF represents a certain mathematical function that based on certain
problem characteristics provides a numerical value. This makes the PF appro-
priate for being designed by GP. However, in order to be able to do this, it is
required to define the set of terminal and function nodes that will be used as



building blocks to construct this expression. The set of terminal nodes that were
used for this purpose are represented in Table 1. As one can see, terminal nodes
model different characteristics and aspects of the problem, such as the distance
between the nodes, the end of the time windows of the customer, but also some
more sophisticated characteristics like the slack of the vehicle or features of other
vehicles in the fleet.

Table 1: Description of the terminal nodes used by GP.
Node Description

d; Distance from current vehicle location to customer j

dd; End of the time window for serving customer j

va; Time when the current vehicle becomes available

ve Remaining vehicle cargo capacity

vb Remaining vehicle battery capacity

sl Slack (time until late) of vehicle for customer j

ttr; Time until customer j is ready

wt Waiting time for vehicle until customer j becomes ready
ddc; Distance of customer j to the depot

sad Distance of second next available vehicle to customer j
sac The capacity of the second next available vehicle

sal Energy level of second next available vehicle

nva Time when the nearest vehicle to customer j is available
nvd Distance of the nearest vehicle to customer

nvel The energy level of the nearest vehicle to customer

Function nodes examined in this study are grouped into five groups:

Group 1 — consists of the basic arithmetic operators: +, -, *, /, where /
is defined as the protected division operator, meaning that if division by 0
occurs that a default value of 1 is returned.

Group 2 — counsists of the binary minimum and maximum operators that
return the smaller or larger out of the two given values, respectively.

Group 3 — consists out of conditional branches, ifpos and ifgt. The
ifpos function accepts three arguments and returns the second argument
if the first one is positive, or the third one if the first one is negative. ifgt
accepts four arguments and if the first one is larger than the second one,
the function returns the third argument, otherwise it returns the fourth.

Group 4 — consists of various nonlinear mathematical functions, such as
sin, cos, In, exp, and sqrt. The sqrt and In operators are implemented as
protected operators, meaning they return 1 if the argument is negative.

Group 5 — consists of two unary functions neg and pos. The neg operator
simply negates its argument, whereas the pos operator returns the maxi-
mum between the argument and 0, meaning it return the argument if it is
positive, otherwise it returns 0.



In the experimental study, all the combinations that include group 1 will be
investigated. The reason why this group is always included is since it includes
the basic arithmetic operators that are always used.

4 Experimental study

4.1 Setup

In order to investigate the performance of different function sets on the quality
of the obtained RPs, the Schneider dataset is used [7]. This dataset consists out
of 56 instances that contain 100 customers, 1 depot, and 21 charging stations.
The number of vehicles required to serve the customers depends on the instance.
based on the distribution of the customers, the instances can be divided into
random (customers are distributed randomly across the space), denoted with R,
cluster (customers are distributed around predefined clusters), denoted with C,
and random cluster (represents a combination of both previous), denoted with
RC. Furthermore, the instances can also be divided into those with tight time
windows (difficult to timely serve the customers), denoted with T, and those
with loose time windows (easier to serve the customers on time), denoted as L.
The original dataset is used to evaluate the RPs on an unseen set of problems,
whereas for training GP another dataset generated in the same way was used.

To evolve RPs, a standard steady state 3-tournament GP algorithm was
used. In each iteration this algorithm selects three individuals randomly that
participate in a tournament, and selects the better two and performs crossover on
them to obtain a child individual. The child individual is mutated with a certain
probability and inserted into the population by replacing the worst individual
in the tournament. GP uses 100 individuals, a mutation probability of 0.3, and
10000 function evaluations. Regarding the genetic operators, for crossover the
uniform, size fair, context preserving, subtree, and one point operators are used,
whereas for mutation the hoist, subtree, permutation, node complement, node
replacement, and shrink operators are used [8]. The implementation was done in
C++ using the ECF framework [9], whereas the experiments were executed on
a Windows 11 PC with an AMD Ryzen Threadripper 7980X 64-Core processor
and 256 GB of RAM. Each experiment was executed 30 times.

4.2 Results

Table 2 outlines the results obtained in the experiments. The table also includes
the results of the manual nearest neighbour (NN) rule that serves as the baseline.
This rule selects as the next destination the customer that is closest to the current
location of the vehicle. GP was executed for each function set combination and
for each problem instance type separately. The table outlines the median values
of the 30 executions that were performed. Furthermore, the table also outlines
the average rank (column "A. R.") of each function set calculated across all
problem types, and also the final rank (column "T. R.") of the sets based on
their average ranks.



Table 2: Results for different function node combinations.

Function set C-T C-L RC-1 RC-2 R1 R2 A.R. T.R.
NN 366410 1031580 176810 1150980 123412 879007 -

1 768 96773 58236 784952 52504 856396 9.7 12
1+2 754 84337 44224 796274 45755 866618 5.7 2
1+3 833 93746 51185 796984 47500 855590 8.7 10
1+4 734 97326 42549 794872 48223 852292 6.5 4
1+5 635 90565 42282 783910 47547 864059 5.5 1
1+2+3 865 89779 50773 815077 47235 859323 9.3 11
1+2+4 689 96526 43340 853724 48568 862527 9.7 12
14245 803 88576 46319 793766 47259 853043 5.8 3
1+3+4 886 94810 42360 827247 48017 849333 8.0 6
1+3+5 932 90487 44857 810439 46130 858957 8.2 7
1+4+5 760 98432 44604 819881 51349 855743 9.7 12
1+2+3+4 802 94223 45407 831958 46087 858614 8.3 8
1424345 632 95342 48863 819132 45525 856860 6.8 5
1+3+4+5 809 97771 52433 794105 46382 858304 9.7 12
14+2+3+4+5 781 94860 46576 867947 46233 854972 8.5 9

The results demonstrate that there is not a single function set that results
in the best performance of the RPs for each problem type. The best rank was
achieved by the function sets including groups 1, 2, and 5, in any of the tested
combinations. Since it is always better to use a smaller function set, it is better
to use either the set 1+2 or 1+5, since the results are comparable between them.
On the other hand, the worst results are obtained either when only arithmetic
operators are used (group 1), or when the set of nonlinear operators is included
(group 4). Therefore, from the results we see that as the size of the function set
increases the results do not improve, rather they even become worse. We see
that in all cases the manually designed RRs achieve a better performance than
the manually designed NN rule.

Figure 1 represents the box plot representation of the results aggregated for
each problem type. We see that most of the function sets achieve comparable
results, and that the dispersion of the results depends on the function node set
that is used. Furthermore, the sets that lead to the best results also achieved
the least dispersed results. The inclusion of conditional functions or nonlinear
mathematical operators increases the dispersion of the results, thus denoting
that it is more difficult to obtain better results.

5 Conclusion

The goal of this study was to investigate the influence of different function nodes
on the quality of the RPs designed by GP for solving the EVRPTW. For that
purpose, different function sets were investigated, which included different math-
ematical or conditional operators. The obtained results show that the best re-
sults are obtained by using only arithmetic operators extended with either the
minimum and maximum operators or the pos and neg functions. On the other
hand, including various nonlinear or conditional functions does not help improve
the results. Furthermore, it is better to keep the size of the function set as small
as possible, due to the increase in the search space that the larger sets cause.



[N N
I =Y

N
N

Lateness

SERNEERENS

©
?

142
1+3
1+4

14243
14244
14245
14344
14345
14445
1+2+3+4
142+4+5
1434445
142434445

Fig. 1: Box plot of the total obtained results.

In future studies our goal is to continue with topics that are connected to the
representation of the PF. Therefore, alternative representations will be investi-
gated, such as linear GP. Furthermore, feature construction methods will also be
investigated to determine whether it is possible to construct new features from
the PFs that were previously evolved. Finally, the plan is also to deal with the
topic of interpretability and explainability of the evolved PFs, with the goal of
obtaining PFs that are easier to interpret by humans.

References

[1] Francisco J. Gil-Gala, Marko Purasevi¢, and Domagoj Jakobovi¢. Evolving routing
policies for electric vehicles by means of genetic programming. Applied Intelligence,
54(23):12391-12419, September 2024.

[2] Jiirgen Branke, Su Nguyen, Christoph W. Pickardt, and Mengjie Zhang. Automated de-
sign of production scheduling heuristics: A review. IEEE Transactions on Evolutionary
Computation, 20(1):110-124, 2016.

[3] Su Nguyen, Yi Mei, and Mengjie Zhang. Genetic programming for production scheduling: a
survey with a unified framework. Complex amp; Intelligent Systems, 3(1):41-66, February
2017.

[4] Josiah Jacobsen-Grocott, Yi Mei, Gang Chen, and Mengjie Zhang. Evolving heuristics for
dynamic vehicle routing with time windows using genetic programming. In 2017 IEEE
Congress on Evolutionary Computation (CEC), pages 1948-1955, 2017.

[5] Francisco Javier Gil-Gala, Sezin Afsar, Marko Durasevic, Juan José Palacios, and Murat
Afsar. Genetic programming for the vehicle routing problem with zone-based pricing. In
Proceedings of the Genetic and FEvolutionary Computation Conference, GECCO ’23, page
1118-1126, New York, NY, USA, 2023. Association for Computing Machinery.

[6] Hu Qin, Xinxin Su, Teng Ren, and Zhixing Luo. A review on the electric vehicle routing
problems: Variants and algorithms. Frontiers of Engineering Management, 8(3):370-389,
May 2021.

[7] Michael Schneider, Andreas Stenger, and Dominik Goeke. The electric vehicle-routing

problem with time windows and recharging stations. Transportation Science, 48:500—-520,

03 2014.

Riccardo Poli, William Langdon, and Nicholas Mcphee. A Field Guide to Genetic Pro-

gramming. 01 2008.

(8

[9

Domagoj Jakobovic, Marko Durasevié¢, Stjepan Picek, and Bruno Gasperov. Ecf: A c++
framework for evolutionary computation. SoftwareX, 27:101640, September 2024.



