
Reducing the stability gap for continual learning
at the edge with class balancing

Wei Wei2, Matthias Hutsebaut-Buysse2, Tom De Schepper1, Kevin Mets3 †

1 - imec, 2,3 - University of Antwerp - imec, IDLab,
2 - Department of Computer Science
3 - Faculty of Applied Engineering,

Department of Electronics and Information and Communication Technology
Sint-Pietersvliet 7, 2000 Antwerp - Belgium

Abstract. Continual learning (CL) at the edge requires the model to
learn from sequentially arriving small batches of data. A naive online
learning strategy fails due to the catastrophic forgetting phenomenon.
Previous literature introduced the ‘latent replay’ for CL at the edge, where
the input is transformed into latent representations using a pre-trained
feature extractor. These latent representations are used, in combination
with the real inputs, to train the adaptive classification layers. This
approach is prone to the stability gap problem, where the accuracies of
learned classes drop when learning a new class, and they only recover
during subsequent training iterations. We hypothesize that this is caused
by the class imbalance between new class data from the new task, and
the old class data in the replay memory. We validate this by applying
two class balancing strategies in a latent replay-based CL method. Our
empirical results demonstrate that class balancing strategies provide a
notable accuracy improvement, and a reduction of the stability gap when
using a latent replay-based CL method with a small replay memory size.

1 Introduction

Continual learning (CL) aims to build deep learning models that can continuously
accumulate knowledge over sequentially arriving batches of data without having
to retrain from scratch [2]. These batches of data are often called tasks. Good
CL performance cannot be achieved easily. The phenomenon of catastrophic
forgetting [6] causes deep learning models to abruptly forget the information
of past tasks, as they are no longer relevant to current optimization objectives.
Replay-based CL methods solve this by storing a fraction of the training samples
of past tasks in the memory, and replay them during the training phase of the
new task. The most simple experience replay (ER) method [9] often outperforms
other CL methods [10]. However, ER is challenging for CL at the edge due to the
constraints of the edge devices (e.g., memory, compute, power). To enable CL at
the edge, Pellegrini et al. [7] proposed AR1* with latent replays, where a part of
inputs of past tasks is transformed into latent representation, and replayed during
the training of new tasks. It is used in the literature as a strong baseline due to
its good performance on the Core50 [5] CL benchmark for image classification.

†This work received funding from the OpenSwarm project. (Grant agreement ID: 101093046).

Recently, De Lange et al. [1] studied the stability gap issue in CL, where the
accuracy of the model on previous tasks drops substantially upon learning a new
distribution (e.g. new class/domain), followed by a recovery after a few iterations
of training. Specifically, this phenomenon was discovered when experimenting
with ER [9]. We hypothesize that the stability gap also exists for CL at the edge
with latent replays. We propose that it is caused by the large number of samples
from the new class present in the new task, and the small number of samples of
old classes in the replay memory (RM), i.e., the class imbalance.

In this work, we validate our hypothesis empirically. We verify the existence
of the stability gap for latent replay with AR1* [7] in the ‘new instance and
classes v2-391’ setting of the Core50 CL benchmark [5], where only a subset of
tasks introduces the distribution shift. Next, we evaluate the efficacy of class
balancing strategies on reducing the stability gap issue by integrating it on the
AR1* baseline. Our results show that class balancing strategies improve the
accuracy of AR1* when the RM is small, and they can reduce, or even completely
mitigate the stability gap for latent replay-based CL.

2 Related work

Stability gap in continual learning: De Lange et al. [1] formalized the
stability gap issue as a trade-off between adaptation to the distribution of
the current task and retaining knowledge acquired from previous ones. They
disentangled the continual learning gradient into stability and plasticity terms
to explain this phenomenon and provided metrics such as average minimum
accuracy (min-ACC) to monitor the stability of the model continuously. Harun et
al. [3] identified that the large loss at the output layer for the new class, and the
excessive network plasticity may cause the stability gap. They proposed to use
data-driven output-weight initialization and dynamic soft target to reduce the
loss of the samples from new classes. Next, they used low-rank adaptation (LoRA)
[4] and output-layer freezing to reduce the number of trainable parameters, which
reduces the model’s plasticity. Compared to the strategies proposed by Harun
et al. [3], class balancing is intuitive to understand and simple to implement,
especially in the edge scenario.

Replay-based continual learning at the edge: Replay-based CL methods
alleviates the catastrophic forgetting by storing a fraction of the training samples
of past tasks in the replay memory, and replay them during the training phase of
the new dataset. To enable Replay-based CL at the edge, Pellegrini et al. [7]
proposed to store latent representations of a subset of the training samples in the
RM. It drastically reduced the memory requirement of the RM and enabled the
subsequent application by Ravaglia et al. [8] to achieve CL at the edge. Our work
investigates the existence of stability gap [1] in CL at the edge in the nicv2-391
setting of the Core50 CL benchmark, where the tasks may contain new data
instances of previously observed classes, and alleviates it via class balancing to
improve the final accuracy of the latent replay-based CL methods.

3 Methodology

The core of our methodology is the integration of a class-balancing strategy in
(latent) replay-based CL approaches. In this work, we integrate two different
strategies on the AR1* latent replay CL method [7] to reduce its stability gap.

The first one is the class-weight-based loss function. For this approach, we
compute the class-weight at the start of each new task. Given the replay memory
RM , a sequence of tasks B = {B1, B2, ..., Bi} and a set of unique classes c ∈ C
in B. We compute, at the start of each new task, the occurrence of each class
c ∈ C in the union of the data in RM and the new task data Bi. Next, the
class-weight of each class is computed as the inverse of their occurrences. Classes
with zero occurrences have zero weights. This class-weight is used to scale the
cross-entropy loss from the training process.

The second strategy is undersampling, where the data from the new task
Bi is undersampled to the size of the least frequently occurring class in RM .
However, we still randomly select samples from the complete task data to add to
RM at the end of the task. The oversampling strategy is not experimented as it
requires extra storage spaces, which is difficult for CL at the edge.

4 Experiment setup

The Core50 CL dataset [5] is used to evaluate the implemented strategies. This
dataset contains images of 50 different domestic object classes belonging to 10
categories, e.g., plug adapters, mobile phones, scissors. The images are captured
in an egocentric view, where the object is held in hand by the operator. There
are 164866, 128× 128 RGB-D images in the dataset.

We evaluate the methods on the ‘new instances and classes v2-391 (nicv2-391)’
setting, as it closely resembles the CL at the edge scenario. In nicv2-391, the
dataset is split into 391 non-overlapping sets of data, forming 391 tasks for CL. The
first task has 3000 images of 10 different classes in different categories, imitating
the pretraining of the model before its deployment at the edge. Subsequent tasks
only have 300 images of a single class, which can either be from a novel class, or
new instances of an already observed class. The setup imitates the randomness
of locally collected data at the edge, and the small task size is in-line with the
storage space constraints of the edge device. We evaluated the class-balancing
strategies and the baseline with a replay memory size (RMsize) of {500, 1000,
1500} to demonstrate their performance with different memory constraints. A
mini-batch size of {32,64,128} is used for these experiments, respectively.

We refer to Pellegrini et al. [7] for the model initialization and pretraining
procedure, and default hyperparameters. Contrary to the conclusion of Lomonaco
et al. [5], we found that it is better to use a fixed learning rate for both the initial
task B1 and the subsequent tasks for the AR1* model. We used a learning rate
of 0.001 for all the tasks. Next, we also fixed the number of training epochs for
all tasks to 1 epoch, except for task B1 which is trained for 4 epochs, as B1 has
much more data compared to subsequent tasks.

AR1* [7] † is used as a lower bound baseline. The model that is trained on
all the available data at once, or the joint model, is used as an upper bound
baseline. To ensure a fair comparison, we tested all the baselines with two
different hyperparameters. First with the hyperparameters from Pellegrini et al.
[7], and then with our hyperparameters we used for the class balancing strategies,
the best result is reported in section 5.

5 Results

We report both the qualitative and the quantitative results. The qualitative
results are reported in the form of a plot of the test-accuracy of the classes in the
first task after each training iteration between task 16 (B16) and task 50 (B50).
The quantitative results are reported as the final accuracy, and the minimum
accuracy [1] of the models trained on Core50 [5] in the nicv2-391 setting.

800 900 1000 1100 1200 1300 1400 1500
Training iteration

0.6

0.7

0.8

0.9

1.0

Te
st

 a
cc

ur
ac

y
(c

la
ss

es
 in

 B
1) Task 17

New class 8

Task 21
Has Class 8

Task 27
Has Class 8

Task 28
New class 21

Task 29
Has Class 21

Task 32
Has Class 8

Task 33
Has Class 21

Task 39
New class 24

Task 43
Has Class 24

Task 47
Has Class 21

method
AR1
AR1-ClassWeight
AR1-Undersample

Fig. 1: The evolution of the macro averaged test accuracy of the classes in B1

after each training iteration between B16 and B50. The vertical lines denote the
iteration where a new class is introduced (marked in red), or when a task with
class data not from B1 begins (marked in orange). The test accuracy of models
with RMsize = 500 are shown.

First, following De Lange et al. [1], we plot the evolution of the macro
averaged class-wise test accuracies for the classes in the first task in fig. 1. These
are the classes {0, 5, 10, 15, 20, 25, 30, 35, 40, 45}. The vertical lines denote the
iteration where samples from a new class are introduced. To avoid visual clutter,
the plot only shows the first 3 times that a new class is introduced. They are at
tasks {17, 28, 39}, where classes {8, 21, 24} are introduced, respectively. The
models used in the plot have a RMsize of 500.

We observe that the AR1* baseline [7] experienced the stability gap issue
each time when a new class is introduced, or when the task does not contain
classes in B1. This is denoted by the drop in accuracy directly after the vertical
lines. AR1* with the undersampling strategy does not show any sign of stability
gap. The accuracy of the first classes even improves at B39 and B43. AR1* with
class-weight-based loss experienced a smaller performance drop at B17, and no
drops when the next two classes are introduced. This shows that applying class

†https://github.com/vlomonaco/ar1-pytorch

balancing strategies leads to a reduced stability gap. Compared to AR1*, this
also results in better performance preservation for the old classes after B47.

To measure the stability of the model quantitatively, the average minimum
accuracy (min-ACC), proposed by De Lange et al. [1] is reported in table 1.
We compute it by observing the absolute minimum accuracy of each classes c
after they have been introduced in a task Bi, and taking the macro average of
them. As opposed to De Lange et al., which measures the minimum accuracy
of each task Bi, we only look at the minimum accuracy of each class c. This is
because the setting used by De Lange et al. [1] ensures each task introduces a
large distribution shift (new class or new domain), while in the nicv2-391 setting,
the tasks don’t always introduce a new distribution (e.g., when they only contain
new instance of previously observed classes).

Dataset Core50, Nicv2-391 [5]

RMsize (→) 500 1000 1500

Method (↓) Minimum accuracy (higher is better)

AR1* [7] 3.23%± 0.41% 4.98%± 0.23% 6.17%± 0.11%

AR1* + undersampling 7.52%± 0.35% (+4.29%) 9.15%± 0.16% (+4.17%) 10.04%± 0.13% (+3.87%)

AR1* + class-weight 9.30%± 0.51% (+6.07%) 10.42%± 0.22% (+5.44%) 12.23%± 0.21% (+6.06%)

Table 1: The minimum accuracy of the models trained on the Core50 dataset in
the nicv2-391 setting. All experiments are repeated 5 times and the standard
deviations are reported.

From table 1, we observe a clear improvement of minimum accuracy when the
class balancing strategies are integrated with the AR1* baseline. This shows that,
with class balancing, the latent replay-based CL method is more stable during the
distribution shift, and performs better in the worst-case scenario. In particular,
the class-weight-based approach achieved a higher min-ACC, potentially as it
can use all the data to train the model, while the undersampling method only
uses a subset of the provided training data.

Dataset Core50, Nicv2-391 [5]

RMsize (→) 500 1000 1500

Method (↓) Final test accuracy (higher is better)

AR1* [7] 64.73%± 2.18% 74.48%± 0.44% 77.98%± 0.6%

AR1* + undersampling 73.85%± 0.98% (+9.12%) 77.11%± 0.39% (+2.63%) 78.13%± 0.39% (+0.15%)

AR1* + class-weight 74.50%± 0.82% (+9.77%) 77.05%± 0.64% (+2.57%) 77.90%± 0.42% (–0.08%)

Joint (Upperbound) 84.92%± 0.43% 84.92%± 0.43% 84.92%± 0.43%

Table 2: The macro averaged test accuracy on all classes after learning 391 tasks
in the Core50 dataset in the nicv2-391 setting. All experiments are repeated 5
times and the standard deviations are reported.

Next, in table 2, we see that both class balancing strategies outperformed
AR1* in terms of macro averaged class-wise test accuracy for all classes for
around 9% and 2.5% after training on 391 tasks with a replay memory size of
500 and 1000, respectively. From another perspective, they reduce the relative

performance gap between AR1* and the joint upper bound by around 45% and
25%. For a RMsize of 1500, the AR1* without class balancing performed on
par with the other methods. This is expected, as a lower RMsize implies fewer
samples per class in the replay memory, and therefore a larger class imbalance
issue between the replay memory and the new task data. However, comparing the
result of table 1 and table 2, we can see that, even though the final test accuracy
of the models are similar, the worst-case performance of the models with class
balancing strategy is much higher. This shows that the learning process of the
baseline model is unstable, which denotes the importance of class balancing for
(latent) replay-based CL, especially when the memory space is limited.

6 Conclusion

We studied the stability gap issue for latent replay-based CL. We hypothesized
that the issue is caused by the class imbalance. The existance of stability gap
for latent replay-based CL is verified by evaluating AR1* [7] on Core50 [5]
small-batched CL benchmark. Two class balancing strategies were integrated to
demonstrate the efficacy of class balancing in reducing the stability gap. The
empirical results show that class balancing can reduce or completely mitigate the
stability gap, and also leads to a better final accuracy when the replay memory
size is small. Future work will focus on improving the quality of data in the replay
memory (with e.g. data distillation), and using more advanced class balancing
methods to alleviate the stability gap or to improve the final accuracy further.

References

[1] M. De Lange, G. van de Ven, and T. Tuytelaars. “Continual evaluation for lifelong
learning: Identifying the stability gap”. In: CoRR, vol. abs/2205.13452 (2022).

[2] M. De Lange et al. “A continual learning survey: Defying forgetting in classification
tasks”. In: IEEE Trans. Pattern Anal. Mach. Intell. 44.7 (2021), pp. 3366–3385.

[3] M. Y. Harun and C. Kanan. “Overcoming the stability gap in continual learning”. In:
CoRR, vol. abs/2306.01904 (2023).

[4] E. J. Hu et al. “Lora: Low-rank adaptation of large language models”. In: CoRR, vol.
abs/2106.09685 (2021).

[5] V. Lomonaco, D. Maltoni, L. Pellegrini, et al. “Rehearsal-Free Continual Learning over
Small Non-IID Batches.” In: CVPR Workshops. Vol. 1. 2. 2020, p. 3.

[6] M. McCloskey and N. J. Cohen. “Catastrophic interference in connectionist networks:
The sequential learning problem”. In: Psychology of learning and motivation. Vol. 24.
Elsevier, 1989, pp. 109–165.

[7] L. Pellegrini et al. “Latent replay for real-time continual learning”. In: 2020 IEEE/RSJ
Int. Conf. Intelligent Robots and Systems (IROS). IEEE. 2020, pp. 10203–10209.

[8] L. Ravaglia et al. “A tinyml platform for on-device continual learning with quantized
latent replays”. In: IEEE J. Emerg. Sel. Topics Circuits Syst. 11.4 (2021), pp. 789–802.

[9] D. Rolnick et al. “Experience replay for continual learning”. In: Advances in neural
information processing systems 32 (2019).

[10] W. Wei, T. De Schepper, and K. Mets. “Benchmarking sensitivity of continual graph
learning for skeleton-based action recognition”. In: CoRR, vol. abs/2401.18054 (2024).

	Introduction
	Related work
	Methodology
	Experiment setup
	Results
	Conclusion

