
Making Convolutional Neural Networks
Energy-Efficient: An Introduction

Noémie Draguet, Benôıt Frénay∗

University of Namur - NaDI - PReCISE - HuMaLearn
Rue Grangagnage, 21, 5000 Namur - Belgium

Abstract. As convolutional neural networks (CNNs) have become main-
stream for object recognition and image classification, the environmental
impact caused by their high energy consumption (EC) is non negligible.
This paper examines techniques that have the ability to reduce the EC
of CNNs. It also highlights the inconsistency of metrics that are used
for estimating or measuring EC, which reduces the comparability of these
techniques. This review aims to shed light on the current situation and to
provide a basis for future research in green machine learning.

1 Introduction

As machine learning and artificial intelligence become increasingly popular, these
technologies start having growing consequences on the environment due to their
substantial energy consumption (EC). Among various models are convolutional
neural networks (CNNs) that perform well in object recognition and image clas-
sification. However, they usually require a lot of computational power to achieve
satisfying results given their high dimensional inputs, their large size and their
substantial number of parameters. For example, 0.19 joules are necessary for
making an inference with ResNet50 on Nvidia RTX 2080 Ti [1]. So far, the
literature has focused on improving the accuracy of those models, or on de-
creasing their size [2], inference time [3] and EC for performance or portability
purposes [4]. Furthermore, the decrease in energy resulting from the proposed
methods is usually not measured with a same metric, which makes the compari-
son of different techniques difficult and the literature inconsistent regarding EC.
This paper gives an overview of existing methods that have for purpose or side
effect to reduce the EC of CNNs, which can help introducing junior researchers
to this subject and might open doors for future research in this area.

Section 2 discusses metrics to measure or approximate the EC of a model and
gives recommendations about their use. Section 3 introduces families of methods
that reduce the EC of CNNs and shows the results obtained with these methods.
Finally, Section 4 concludes and gives perspectives for future research.

2 Metrics for Energy Consumption

Before introducing techniques that can reduce the EC of CNNs, it is essential
to first discuss how to measure it. Indeed, works in the literature use multiple

∗Supported by SPWR under grant n°2010235 - ARIAC by DIGITALWALLONIA4.AI.



metrics as proxies for EC. EC can be measured or inferred in three different
ways: from hardware measurements, with proxies or with a model.

Consumed energy is sometimes inferred from actual hardware measurements.
However, most of the time, energy is approximated by proxies such as the num-
ber of parameters of the model, the average number of operations (OPS) per
input or the runtime for inference. These approximations do not always reflect
the actual energy that was consumed [4]. For example, using scalable-effort clas-
sifiers results in a 2.79x decrease in average OPS per input, but only in a 2.3x
and 1.5x decrease in EC and runtime, respectively [5]. The difference between
these measures is mostly due to implementation overheads. Measuring the ac-
tual EC of a CNN is complicated, which is why Cai et al. [6] present an approach
called NeuralPower that predicts the EC of different CNN architectures with-
out needing to train the models. A model is trained to predict the EC, power
and runtime of each layer of a CNN, based on its architecture, and the results
are then generalized to the network level. Other models or frameworks, such as
the Synopsys Power compiler, also exist to evaluate EC. In conclusion, several
metrics or methods can be used to measure EC, and their choice can influence
the conclusions that are drawn. For measuring actual EC and its impact on the
environment, it is preferable to directly use hardware measurements.

3 Methods for Reducing Energy Consumption

This section presents techniques that have for purpose or side effect to reduce
the EC of CNNs, along with their results. Most of the presented methods reduce
EC during inference and do not specifically address training. This is most likely
because reducing EC for training is even more challenging than for inference.
The ignored additional EC induced by a potentially more complex training might
reduce the benefits of the presented techniques. This is however out of scope of
the present work, since training EC is not discussed in the reviewed papers.

3.1 Pruning and network sparsification techniques

Pruning methods and network sparsification techniques are the most explored
in the literature. They simplify the network by removing or reducing some of
its components (weights, neurons, filters or number of layers). The first paper
introducing pruning “Optimal brain damage” [7] dates back to 1989 and removed
weights from the artificial neural network using second-derivative information.
At that time, the focus of pruning was not to reduce EC and this aspect was
therefore not studied. The objective was rather to achieve better generalization,
to reduce the need of training examples and to improve the learning speed.

A few years later, Iandola et al. [2] demonstrated how to use sparsification
techniques to reduce the number of parameters of CNNs. The paper focuses on
reducing the size of a given CNN architecture without loosing accuracy. Their
SqueezeNet architecture achieves AlexNet-level accuracy on ImageNet with 50x
less parameters by using three distinct strategies: (1) “replace 3x3 filters with
1x1 filters”, (2) “decrease the number of input channels to 3x3 filters” and (3)



“downsample late in the network so that convolution layers have large activation
maps”. The two first strategies aim to reduce the number of parameters in the
network, while the third one helps to maximize accuracy under the constraint
of a limited number of parameters. While demonstrating significant reduction
of the number of network parameters, the paper does not mention EC.

Another example of pruning by Wen et al. [8] shows an average speedup of
5.1x and 3.1x for convolutional layer computations in the AlexNet architecture on
CPUs and GPUs, respectively. The method obtains a more compact architecture
from a large model, by adjusting filters, channels, filter shapes and depth of
the network. This is achieved by leveraging group Lasso regularization during
training. This study focuses on computational speed rather than on EC in itself,
which makes it slightly less relevant for the present work on EC reduction.

While the three aforementioned papers successfully reduce the size of the
model, this does not necessarily imply a significant decrease in EC, as previ-
ously mentioned. Yang et al. [4] introduce energy-aware pruning, which consists
in pruning the weights layer by layer while starting with the layer that consumes
the most energy. The first step is to determine which layers of the network re-
quire the most energy. This is determined by a framework that can estimate the
energy consumption of a CNN for inference, based on two components: compu-
tation and data movement. The energy of each multiply-accumulate operation
and each memory access are extrapolated from actual hardware measurements,
which is more relevant compared to metrics that only take into account the size
of the network or the number of operations executed. Layers with higher EC are
given priority as the pruning process becomes progressively more challenging.
Following the established order, each layer is pruned and its weights are locally
fine-tuned. After all the layers have gone through the process, the network is
globally fine-tuned using back-propagation. The method of Yang et al. [4] re-
duces the EC (as estimated by the above framework) of AlexNet and GoogleNet
by respectively 3.7x and 1.6x with less than 1% top-5 accuracy loss.

3.2 Reduced precision networks

Another way to decrease the EC of CNNs is to reduce the precision of their
components (representing them with fewer bits), although this reduction remains
mostly theoretical, as current commercial GPUs are only able to work with 16
or 32 bit arithmetic. It is rather useful to store models more efficiently. For
the sake of completeness and because reduced precision has been used in a high
number of works, two examples of applications are provided in this section.

First, Hubara et al. [9] present a method to train Quantized Neural Networks
(QNNs). In QNNs, weights and activations are represented using only a few
bits, which simplifies operations and aims to reduce power consumption. The
quantization process can be applied to both weights and activations or to only
one of these components, and the quantized components can be used either
during both training and testing phases or only during testing. For the MNIST,
CIFAR-10, SVHN and ImageNet datasets, the accuracy of QNNs approaches the
accuracy without quantization. Even though the exact impact of this technique



on EC is not mentioned in [9], the reduction in memory access cost due to the
smaller memory size is expected to reduce EC with the appropriate hardware.

Second, Courbariaux et al. [10] introduce a method called BinaryConnect.
This technique is not directly aimed at reducing EC but rather focuses on in-
creasing the computational speed of CNNs. Binary weights are used instead of
real-valued weights for the training to simplify the computing operations. The
performance of BinaryConnect in accuracy is slightly higher than the perfor-
mance of CNNs using real-valued weights for the MNIST, CIFAR-10 or SVHN
datasets, as the reduced precision acts as a regularizer for these tasks.

Reduced precision networks must be used with appropriate hardware that
enables low-precision values to not loose its benefits. In this vein, half-precision
floats can be leveraged by PyTorch using automatic mixed precision.

3.3 Conditional computation

Conditional computation leverages the fact that some inputs are easier to classify
than others. It consists in learning policies that either determine when an input
should exit the network or which network is the most appropriate.

Venkataramani et al. [5] introduce the notion of “scalable-effort classifiers”,
which consist of an ensemble of classifiers of varying complexities. The objective
is to use simple classifiers for inputs that are easy to classify, and to use more
complex ones when it is not the case. The input progresses through several
stages, each composed of two biased classifiers designed to detect a single class
more effectively. A stage is only added to the system if the cost it incurs is
smaller than if all instances had proceeded to the next stage. After each stage, a
decision is made about the termination of the classification process. Even though
this work does not specifically address CNNs, it focuses on energy efficiency by
taking into account the average number of OPS, the energy and the runtime.
Results differ across datasets but overall, they show a 2.79x decrease in average
OPS per input, which leads to a 2.3x and 1.5x reduction in EC (from hardware
measures) and runtime, respectively.

Panda et al. [11] use conditional deep learning (CDL) to design energy-
efficient CNNs. Linear classifiers are trained to decide whether the classification
process should continue or be terminated after a convolutional layer. A classifier
is added after a convolutional layer only if it improves the overall efficiency of
the model, taking into account the EC of additional computations performed
by this classifier. The constructed linear classifiers leverage convolutional layer
features to determine the difficulty of inputs and decide if the next layer should
be activated. The linear classifier at each stage determines a class label for the
input and associates a confidence value to it. A threshold (activation value) is
set and the classification process is terminated if the confidence value is above
this activation value for exactly one class label. Otherwise, the input is deemed
as too difficult and moves on to the next stage. This method shows a 1.91x de-
crease in average number of OPS for MNIST, corresponding to a 1.84x reduction
in EC (estimated with Synopsys Power). This is tested on two different CNN
architectures, and shows bigger benefits when used with the most complex one.



Bolukbasi et al. [3] show two different techniques of conditional computing.
The first one is quite similar to Panda et al. [11] and trains a decision function (or
policy) that determines whether an input should exit the classification process
or not. The second method by Bolukbasi et al. [3] organizes a set of pre-trained
CNNs in an acyclic graph and trains an exit policy (or decision function) at
each node of the graph. These CNNs present different levels of accuracy and
computational time. The input is first evaluated by the simplest CNN (with
a smaller computational time), and the policy determines whether the process
should terminate after this evaluation or the instance has to be evaluated by a
more complex network. The process goes on until a CNN yields a satisfactory
output. For the ImageNet 2012 dataset and a variety of network architectures,
Bolukbasi et al. obtain a speedup of up to 2.8x compared to the performance of
the initial architecture, with less than 1% top-5 accuracy loss.

Stamoulis et al. [12] simultaneously address two issues encountered when de-
signing adaptive systems of CNNs: network selection and network design. When
building adaptive systems of CNNs (as in the previous example), the assembled
CNNs are usually treated as black boxes with a predefined architecture. The
goal of Stamoulis et al. is to optimize the hyper-parameters of each CNN with
regard to energy, accuracy and communication constraints. This reduces the EC
for image classification on a mobile device by up to 6x compared to adaptive
systems of CNNs that consider them as black boxes with a fixed architecture.

3.4 Spatially adaptive networks

Spatially adaptive networks are less common and are explored to a smaller extent
for reducing the EC of neural networks. This method is similar to conditional
computing in many ways. Bengio et al. [13] present this technique, which consists
in activating only some parts of the network at run-time. To do so, a policy is
learned for each layer of the network, using reinforcement learning. This policy
is input-dependent and determines the probability of activation for each node
within the layer. The authors’ motivation is mainly to accelerate computations
and they show speed-ups of 5x to 10x on CPUs and 2x to 4x on GPUs. Similarly,
for example, Rashid et al. [14] propose an adaptive CNN for human activity
recognition (AHAR). AHAR uses an output block predictor to determine which
part of a baseline CNN architecture must be used for a given input. Results
show that AHAR leads to a 1.12x decrease in energy consumption (as measured
by the EFM32 Giant Gecko microcontroller) compared to the baseline CNN.

3.5 Hardware optimizations

A last technique that can help reducing the EC of CNNs is hardware optimiza-
tion, orthogonal to the above software optimizations. Hardware optimizations
can therefore be combined with other techniques, such as reduced precision net-
works [9] or pruning [8]. Liu et al. [15] present a low-power hardware architecture
where computations are performed in a column-wise manner. This aims to re-
duce hardware resources and power consumption. Indeed, power is reduced for
LeNet, AlexNet and VGG16 by up to 8.45%, 49.41% and 50.64% respectively.



4 Conclusion

A variety of existing techniques can reduce the EC of CNNs, including but not
limited to pruning and network sparsification techniques, reduced precision net-
works, conditional computation, spatially adaptive networks and hardware opti-
mizations. However, so far, papers have not been consistent about the way they
measure this decrease in EC. Furthermore, some metrics might vary according
to the hardware on which the model runs (OPS or runtime for instance). Results
may also vary according to the allowed loss in accuracy, the task at hand and the
baseline architecture. One of the biggest axes that can be suggested for future
research is to reimplement all these methods and to benchmark them using an
identical hardware equipment, baseline architecture, task, maximum accuracy
loss and metric for energy. In the current situation, it is difficult to evaluate
which methods are the most promising. Ideally, hardware measurements should
be preferred to measure the actual EC (instead of proxies). Secondly, these
techniques are primarily focused on reducing the evaluation time or the size of
CNNs, but not on decreasing their EC as such. Therefore, it would be judicious
to leverage these existing techniques and to create new architectures with a focus
on EC, considering the growing environmental concerns. Finally, it is to note
that the presented techniques usually focus on the testing phase, but that new
techniques could aim to reduce the EC of the training phase as well.

References
[1] Radosvet Desislavov, Fernando Mart́ınez-Plumed, and José Hernández-Orallo. Trends in ai

inference energy consumption: Beyond the performance-vs-parameter laws of deep learning.
Sustainable Computing: Informatics and Systems, 38:100857, 2023.

[2] Forrest N Iandola, Song Han, Matthew W Moskewicz, et al. Squeezenet: Alexnet-level accuracy
with 50x fewer parameters and < 0.5 mb model size. arXiv:1602.07360, 2016.

[3] Tolga Bolukbasi, Joseph Wang, Ofer Dekel, et al. Adaptive neural networks for efficient infer-
ence. In ICML, volume 70, pages 527–536, 2017.

[4] Tien-Ju Yang, Yu-Hsin Chen, and Vivienne Sze. Designing Energy-Efficient Convolutional
Neural Networks using Energy-Aware Pruning. In CVPR, pages 6071–6079, 2017.

[5] Swagath Venkataramani, Anand Raghunathan, Jie Liu, et al. Scalable-effort classifiers for
energy-efficient machine learning. In DAC, pages 1–6, 2015.

[6] Ermao Cai, Da-Cheng Juan, Dimitrios Stamoulis, et al. NeuralPower : Predict and deploy
energy-efficient convolutional neural networks. In ACML, volume 77, pages 622–637, 2017.

[7] Yann LeCun, John Denker, and Sara Solla. Optimal brain damage. In NIPS, volume 2, pages
598–605, 1989.

[8] Wei Wen, Chunpeng Wu, Yandan Wang, et al. Learning structured sparsity in deep neural
networks. In NIPS, volume 29, pages 2082–2090, 2016.

[9] Itay Hubara, Matthieu Courbariaux, Daniel Soudry, et al. Quantized neural networks: Training
neural networks with low precision weights and activations. JMLR, 18(187):1–30, 2018.

[10] Matthieu Courbariaux, Yoshua Bengio, and Jean-Pierre David. Binaryconnect: Training deep
neural networks with binary weights during propagations. In NIPS, pages 3123–3131, 2015.

[11] Priyadarshini Panda, Abhronil Sengupta, and Kaushik Roy. Conditional deep learning for
energy-efficient and enhanced pattern recognition. In DATE, pages 475–480, 2016.

[12] Dimitrios Stamoulis, Ting-Wu Rudy Chin, Anand Krishnan Prakash, et al. Designing adaptive
neural networks for energy-constrained image classification. In ICCAD, pages 1–8, 2018.

[13] Emmanuel Bengio, Pierre-Luc Bacon, Joelle Pineau, et al. Conditional computation in neural
networks for faster models. In Workshop track - ICLR, 2016.

[14] Nafiul Rashid, Berken Utku Demirel, and Mohammad Abdullah Al Faruque. Ahar: Adaptive
cnn for energy-efficient human activity recognition in low-power edge devices. IEEE Internet
of Things Journal, 9(15):13041–13051, 2022.

[15] Xinyu Liu, Chenhong Cao, and Shengyu Duan. A low-power hardware architecture for real-time
cnn computing. Sensors, 23(4):2045, 2023.


	Introduction
	Metrics for Energy Consumption
	Methods for Reducing Energy Consumption
	Pruning and network sparsification techniques
	Reduced precision networks
	Conditional computation
	Spatially adaptive networks
	Hardware optimizations

	Conclusion

