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Abstract. Predictive coding–a popular theory in neuroscience–has gar-
nered significant attention in the machine learning community aiming to
incorporate brain-inspired components in neural networks. While various
proposals have demonstrated the ability of predictive dynamics to render
robustness and entail human-like perception of illusions, it remains un-
clear if they improve the alignment between brain and artificial represen-
tations. Here, we systematically investigate the conditions under which
brain-inspired modifications in predictive processing improve alignment
between model and neural representations in the brain. Our results re-
veal that the feedback component significantly increases similarity between
model representations and those found in higher-level visual brain areas,
especially when processing complex visual scenes.

1 Introduction and Related Works

Predictive coding theory in neuroscience posits that the brain continuously pre-
dicts and refines an internal model of the world, allowing it to anticipate sensory
inputs based on prior experiences and current context[1]. This popular hierar-
chical process integrates top-down and bottom-up information and has inspired
machine learning researchers looking to develop visual models with brain-like
performance and characteristics [2, 3, 4]. The incorporation of predictive coding
was demonstrated to improve the performance of neural networks, even promot-
ing human-like behavior [5].

These findings, in the context of using AI models to explain brain data, raise
an obvious question: Does the incorporation of these bio-inspired dynamics im-

prove the alignment between the model and brain representations?. Prior studies
have investigated this question[6, 7]. Using representational similarity analy-
sis, (i.e., RSA), [7] demonstrated that predictive models trained in an unsuper-
vised manner explained brain visual representations better than their supervised
counterparts. [6] showed that unsupervised predictive coding networks [4] with
higher RSA scores are correlated with better performance in next frame predic-
tion and object matching. While these works showed promising trends, they test
the alignment only at the level of representational geometry, use smaller brain
datasets, and use network architectures where tweaking the impact of feedback
and feedforward components is relatively di!cult.

In this work, we address these issues by quantifying the brain-similarity of
a novel and flexible predictive coding network with a large-scale fMRI dataset.
Specifically, using the model made available by the predify python package [2]–a
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Fig. 1: We add predictive coding dynamics to VGG16 and extract activations
from five layers. For each timestep, we extract layer activations and train ridge
regressions to predict fMRI data from di”erent ROIs

VGG16 performing predictive coding—we modeled representations in di”erent
brain regions of interest (ROIs) obtained from the Natural Scenes Dataset (NSD)
[8]. We report results demonstrating improved ability to predict fMRI data over
recurrent (time-)steps compared to a feedforward VGG161.

2 Methods

Predictive VGG16 (PVGG16) Predify integrates predictive coding dynam-
ics into models by augmenting a pretrained classification model (here VGG16),
with feedback connections trained in an unsupervised fashion. As illustrated
in Figure 1, these feedback connections divide the model into a sequence of
consecutive predictive coding (PCoder) modules (here 5 PCoders in PVGG16).
The output of each PCoder, eN (t), over timesteps, incorporates input from feed
forward, backward, and recurrent connections using the following equation:

eN (t+ 1) = ωN [W f
N→1,NeN→1(t+ 1)] + (1→ ωN → εN )eN (t)

→ ϑN↑ϖN→1(t) + εN [W b
N+1,NeN+1(t)]

feedforward

feedback predictionserror

memory

where ωN , εN (0 ↓ ωN + εN ↓ 1), ϑN are layer-specific coe!cients controlling
the weight of the feedforward, feedback and error-correction signals respectively.
ϖN→1 is the Mean Square Error between eN→1(t) and W b

N,N→1eN (t) (the top-
down prediction) at time step t and is used to train the feedback connections
in-line with the predictive coding principle. We refer the readers to the original
paper for additional details.

Natural Scenes Dataset The Natural Scenes Dataset (NSD)[8] contains high
quality fMRI responses to natural scenes from the Common Object in Context

1All code to reproduce the results available at : https://github.com/cvai-roig-lab/
Predictive-Coding-Dynamics-Enhance-Model-Brain-Similarity



(COCO) database [9]. Out of eight, we used a subset of five subjects (subjects
1,2,4,5,7) with high signal-to-noise ratio (SNR) [8]. The average number of trials
number were 9629.

Feature Extraction and Brain Alignments We use the ‘Predify’[2] and
‘Net2Brain’ toolboxes [10] to extract features from the five PCoders in PVGG16
and their corresponding baseline layers in VGG16. To estimate the alignment
between model activations and fMRI responses, we used a linear regressor regu-
larized with a ridge penalty as implemented in ’Net2Brain’, which is a standard
approach for voxel-wise encoding models [10]. The ridge regressor was trained
on the training split (80 % of the total data) using nested cross-validation.

To align model activations, we divide with di”erent brain ROIs into two
broad groups – (i) early visual cortex (ECV) including the early- and mid-level
visual cortex (V1, V2, V3, hV4 ), and (ii) the high level visual cortex (HCV),
consisting of body-selective (EBA, FBA-2 ), face-selective (OFA, FFA-1, FFA-2,
mTL-faces, aTL-faces), place-selective (OPA, PPA, RSC ), and word-selective
(OWFA, VWFA-1, VWFA-2, mfs-words) regions.

The trained ridge regressors are evaluated on held-out data (test set). The
fMRI encoding accuracy is calculated by measuring the similarity between pre-
dicted and actual signals with Pearson correlation. The final alignment scores
are the average across subjects and ROIs. To visualize directly the significance
of predictive coding to augmenting brain similarity, the final alignment scores
(mean Pearson coe!cients) of PVGG16 are normalized by their respective feed-
forward counterparts. Normalized accuracy above 1 indicates that predictive
coding promotes brain-model similarity.

Image Complexity Metrics We investigate the impact of predictive coding
on complex visual scene processing. Following previous research, we used entropy
to measure the complexity of test images [11]. We separately evaluated brain
alignment for the images with the top and bottom 10% complexity values.
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Fig. 2: Mean normalized encoding accuracy in early visual, and high level visual,
cortex by PVGG16 (ωN = 0.3, εN ↔ [0.1, 0.2, 0.3, 0.4, 0.5]). The error bars
represent the standard error and ↭ denotes that normalized encoding accuracy
is significantly di”erent(p ↓ 0.05) from the baseline.



3 Experiments and Results

Predictive coding selectively improves alignment in higher visual re-
gions: We first measured the brain alignment by using the default parameters
provided in predify (ωN = 0.3,εN = 0.3,ϑN = 0.1; Figure2 column 4). We ob-
served that, in the early visual cortex, on average, predictive dynamics did not
alter, or marginally decreased, the brain-model alignment across all the pcoders.
In contrast, predictive dynamics consistently improved the alignment in the high
level visual cortex, indicating that the integration of feedback information selec-
tively helps the alignment for higher brain regions. Interestingly, for both early
visual and high level visual cortex, PCoder5 consistently ranked above its feed-
forward counterpart. The slower changes in this PCoder can be attributed to
the lack of any feedback (resulting in a strong memory component) to this layer.
But its relatively higher alignment with the brain data is intriguing; previous
works have reported that very late layers in networks show a decreased alignment
with the brain data, possibly due to a preferential shift towards categorical rep-
resentations necessary for the final discriminative task[12]. Our results indicate
that the generative predictive coding iterations might alleviate this discrepancy,
further aligning the models in processing hierarchy with the brain data.

Stronger feedback improves high-level visual cortex alignmnent: We
hypothesized that the observed alignment can be further improved by increasing
the feedback in the networks. To test this, we systematically increased the εN

from 0.3 to 0.5 by keeping other coe!cients fixed and measured the brain-model
alignment. We observed that stronger feedback significantly and consistently
improved the alignment in the high level visual cortex over timesteps. Indeed,
as explained earlier, PCoder5 showed little change in its alignment (though sur-
prisingly in the upward direction). The same tests in the early visual cortex
showed an opposite trend, where higher feedback decreased the normalized ac-
curacy values over timesteps.

Complex Scene Perception requires Predictive Coding Dynamics: Feed-
back plays a crucial role in visual scene processing, particularly in integrat-
ing contextual information and resolving ambiguities in complex visual stimuli.
Prior research demonstrate that more complex scenes elicit increased feedback
activity in the brain, highlighting the importance of top-down modulation dur-
ing object detection in natural scenes [13]. This feedback supports the process-
ing of intricate scene components by enhancing representational integration in
higher visual areas. Building on these insights, we investigated whether feed-
back connections between PCoders could enable PVGG16 to exhibit brain-like
processing of complex scenes. We selected models trained with εN = 0.5 which
yielded highest similarity scores for late PCoders in Figure 2, and re-analyzed
their predictive accuracy on test images of high and low complexity, respectively.

Predictive coding dynamics consistently improved alignment with brain rep-
resentations in the high level, but not the early visual cortex when processing
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Fig. 3: Normalized mean encoding accuracy of the early visual and high level
visual cortex for PVGG16 (ωN = 0.3, εN = 0.5), on subsets of images with low
and high complexity values, estimated using entropy. The error bars represent
the standard error and ↭ denotes that normalized encoding accuracy is signifi-
cantly di”erent(p ↓ 0.05) from the baseline.

high complexity scenes. Additionally, in the ECV, predictive coding improved
brain-similarity for low complexity images, while having no (or even negative)
influence on brain similarity for complex images (figure 3). This indicates that
for complex images feedback dynamics transform model representations to be
more akin to those employed in late-stage visual processing. These results sup-
port the notion that feedback mechanisms are essential for neural networks to
correlate components within complex scenes and extract meaningful semantic
information, paralleling the dynamics observed in biological vision systems.

4 Discussion and Conclusion

The results of our experiments reveal that predictive coding dynamics enhance
alignment with representations in late, rather than early, brain regions. Specifi-
cally, our findings suggest that feedback signals–designed to simulate top-down
cognitive processes–are the primary drivers of this improved alignment. This
indicates that the incorporation of feedback information transforms the model
representations to become similar to those found in higher brain regions respon-
sible for complex scene processing. In contrast, early visual areas show weaker
alignment with predictive coding models. This may indicate that the feedback
information, as modeled in the current form, is less crucial when modeling the
initial stages of visual processing.

In conclusion, our findings show that predictive coding dynamics enhance
alignment with cognitive representations with strong integration of top-down
signals. However, the e”ects of predictive coding may be counterproductive when
trying to simulate representations that are mostly the results of feedforward
processing. To fully leverage the potential of predictive coding for achieving
human-like visual processing, it is essential to carefully consider the specific
cognitive processes leveraged by humans to complete this task.

Finally, the current methods remain limited by the fact that the fMRI brain



data used here have low temporal resolution, incompletely constraining the tem-
porally active models. Future work using brain data with high temporal resolu-
tion, such as acquired using EEG/MEG or ECoG are a promising direction.
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