
RAM: Retrieval Augmented Modelling for
Tabular In-Context Few-Shot

Domain Adaptation

Oleh Kostromin, Felix Kossak, Michael Zwick ∗

Software Competence Center Hagenberg GmbH
Softwarepark 32a, 4232 Hagenberg, Austria

Abstract. Transformer architectures have shown great success in natu-
ral language processing, sparking interest in their applications on tabular
data. However, the potential of using transformer-like architectures for in-
context domain adaptation in tabular settings remains underexplored. We
introduce Retrieval-Augmented Modelling (RAM), a compact attention-
based architecture specifically designed for this task. RAM utilises a
Domain-Aligned Memory training strategy, which ensures that it always
processes the data from the same domain at each training step, allowing the
model to focus on domain-specific patterns. Evaluated on synthetic data
simulating domain shifts, RAM outperforms traditional machine learning
models, effectively adapting to unseen domains.

1 Introduction

Transformers have achieved remarkable success in natural language processing
tasks. They excel not only in general reasoning, but also in extracting informa-
tion from external memory and performing in-context learning. This success has
motivated attempts to adapt transformer-like models for tabular data. However,
the suitability of transformer-like architectures for tabular in-context domain
adaptation remains underexplored. Domain adaptation is crucial in scenarios
where models need to generalise to new domains with limited labelled data - a
common situation in real-world applications. Existing models either concentrate
on within-domain improvements, or aim for universal generalisation across all
tasks, potentially overshooting the specific objectives of domain adaptation and
adding unnecessary complexity for practical use in resource-constrained environ-
ments.

To address this gap, we propose RAM, a compact attention-based archi-
tecture designed specifically for in-context domain adaptation on tabular data.
RAM aims to balance the performance and size, making it suitable for CPU
inference and deployment on mobile or edge devices. In addition to the architec-
ture, we propose a Domain-Aligned Memory (DAM) training procedure. This
training strategy ensures that the model’s inputs and memory consist of data

∗The research reported in this paper has been partly funded by BMK, BMAW, and the
State of Upper Austria in the frame of the SCCH competence center INTEGRATE (FFG
grant no. 892418) part of the FFG COMET Competence Centers for Excellent Technologies
Programme.



from the same domain at each step, allowing the model to rely more effectively
on the memory and focus on identifying domain-specific patterns in-context.

We evaluate RAM, along with the DAM training procedure, on a synthetic
dataset specifically constructed to simulate domain shifts. We compare the
model’s performance to traditional machine learning approaches such as nearest
neighbours, linear regression and tree-based methods. Our results demonstrate
that models lacking in-context domain adaptation capabilities struggle to main-
tain performance under domain shifts and are outperformed by RAM. These
findings highlight RAM’s ability to effectively adapt to new domains, offering
an advantage over models not equipped for in-context adaptation.

2 Related Work

2.1 In-Context Learning and Retrieval Augmented Generation

In-context learning (ICL) is the ability of the model to generalise to unseen
tasks without being restrained by directly learning from several (few) examples
provided directly as input during inference [1]. This technique is widely used
in natural language processing by including a description of the task (instruc-
tion) and several solved cases in the prompt. Compared to supervised learning,
ICL does not require parameter updates, which can assist with broadening the
application area by using the same model for different downstream tasks.

The in-context learning mechanism has also been successfully applied in
the tabular domain. As demonstrated by Holmann et al. [2], a single model
pre-trained on a large volume of synthetically generated data can solve small
classification tasks (up to 1000 samples and 100 features) while outperforming
traditional models like Gradient-Boosted Decision Trees (GBDT) and achieving
performance comparable to state-of-the-art AutoML systems but at a fraction
of the time.

Retrieval-Augmented Generation (RAG) is a technique that allows to pro-
vide additional (external) information to the model during inference [3]. In the
natural language domain, RAG has been widely used for open-domain question
answering and other knowledge-intensive tasks that require accessing external
information to generate accurate responses.

In the tabular domain, RAG was mainly used for allowing the models to refine
the predictions by directly accessing the whole training set. Hopular [4], NPT [5]
and SAINT [6] use stacked blocks of inter-sample and inter-feature interaction
layers which allows to perform multiple memory lookups in a single inference
pass. TabR [7] offers a simplified approach by using a single retriever module
at the beginning. In addition, contrary to other approaches, TabR retrieval
mechanism is based on Euclidean distance instead of the cosine similarity. These
tabular RAG architectures are able to achieve state of the art performance among
deep learning methods and compete with gradient-boosted decision trees.

Although RAG and ICL are two distinct concepts, we consider them to be
highly interrelated as both enable the models to adapt to new information with-
out additional training.



2.2 Compact Transformers

Reducing the size and inference latency of the transformer models while pre-
serving their reasoning capabilities is an important research focus for applica-
tions with limited resources, like on-device deployments. Common strategies for
model compression usually include quantization, where the weights are converted
to lower precision representation while the architecture remains unchanged, and
the usage of layers and blocks specifically designed for the reduction of the num-
ber of weights. Examples of such layers are Multi-Query Attention (MQA) [8]
and Grouped-Query Attention (GQA) [9], variations of a regular self-attention
mechanism that reuse the key-value projection matrices across all or several
attention heads respectively, accelerating the computation speed-up by several
times, albeit with some performance degradation. Another approach for con-
structing a more compact transformer architecture was proposed by Liu et al.
[10], who suggested using narrower layers and sharing the weights across multiple
blocks to build deeper models without increasing the weight count.

In the context of tabular transformers, the problem of model size and latency
is equally important, given that transformer-based models often have to compete
with traditional machine learning methods that offer similar predictive power
while being more compact.

3 Retrieval Augmented Modeling

In this section, we introduce Retrieval-Augmented Modeling (RAM), our pro-
posed architecture designed specifically for in-context domain adaptation on
tabular data. RAM consists of four main components (shown on Figure 1):
an embedding module, a retrieval module, a feature-transformer module and a
task-specific head.

Embedding module maps features into a common embedding space. Fol-
lowing the input format of Hopular, this block operates on flattened vectors per
sample, where numerical features are unit-scaled, and categorical features are
one-hot encoded. The first layer maps the input features to an intermediate rep-
resentation that is four times the size of the embedding dimension. The outputs
of the first layer are activated using GELU. The second layer projects the in-
termediate representation into the target space and is shared across all features.
Both layers are followed by a layer normalisation block. Additionally, type and
positional encodings are optimally added to the embeddings.

Retriever performs the lookup in the external memory. Lookup is performed
by a modified attention mechanism that, in addition to reusing value projections
across all attention heads (as in multi-query attention), also uses a single shared
projection matrix per head for both keys and queries. Following the idea of
TabR, we use only a single retriever block immediately after the embedding
block.

Feature transformer iteratively refines the representations obtained from
the retriever module. Our implementation is inspired by MobileLLM [10] and
includes several stacked transformer blocks with grouped-query attention. We



Fig. 1: Outline of the RAM architecture. (a) On a high level, RAM consists
of an Embedder, Retriever, Feature Transformer and a Task-specific head. (b)
The core of the embedder is a modified cross-attention layer that mixes the true
targets of memory samples into the value projection. (c) The feature transformer
base block consists of Grouped Query Attention followed by SwiGLU.

also employ the weight-sharing between blocks. This behaviour is controlled by
two hyperparameters n blocks and n repeats, where n blocks defines the number
of blocks with unique weights and n blocks · n repeats defines the total number
of blocks.

Task specific head is responsible for producing the final outputs for down-
stream tasks. For both classification and regression we use a global average
pooling across the feature dimension followed by a single linear layer that pro-
cesses the pooled representation.

3.1 Training Procedure and Domain-Aligned Memory

To improve the RAM’s ability for in-context domain adaptation, we introduce
a Domain-Aligned Memory (DAM) training procedure. This method operates
under the assumption that the dataset consists of observations from multiple
distinct domains. Before training, we partition the dataset and the labelled
memory based on the domain, and during training operate on a single subset
at a time. This way we ensure that the domains of both the input and the
memory are always aligned during training and the model is able to concentrate
on domain-specific patterns.

4 Experiments and Results

To evaluate the effectiveness of RAM for in-context domain adaptation, we con-
ducted experiments to measure its performance under domain shifts. Given
the limited availability of multi-domain tabular datasets, we resorted to syn-
thetic datasets which were generated in three steps. First, we randomly sam-
pled domains (hidden features) and a set of scenarios (observable features) for



each domain from a normal distribution. Afterwards, the labels were obtained
by passing the concatenated samples through a randomly initialized non-linear
neural network. Finally, the hidden features were discarded, retaining only a
domain-identifier needed for DAM grouping.

We compared the performance of RAM with traditional machine learning
models: Linear Regression, K-Nearest Neighbors (KNN), and Random Forest.
For RAM, we used default hyperparameters across all experiments due to pro-
hibitive computational costs for performing an extensive hyperparameter opti-
mization. For the baseline models we used grid search on a dedicated validation
subset of domains.

As shown in Table 1, RAM outperformed all other tested methods, indicat-
ing that it can utilise the provided memory to infer the characteristics of the
target domain. To further investigate the importance of the retrieval block, we
conducted an ablation study where (a) only labels were used as values in the
attention layer, and (b) only features were used as values. While using only
labels resulted in slightly worse performance, excluding the labels led to a ma-
jor drop in performance. Additionally, to assess whether RAM truly utilizes its
pre-training across multiple domains, or merely acts as a KNN, we compared
its performance with a set of per-domain k-nearest regression models trained
directly on the memory. Even in this setting, RAM was a better performing
method, further reinforcing the assumption that RAM’s architecture and train-
ing procedure allows it to achieve superior generalization.

Model MSE R2

RAM 1.89± 0.21 0.93± 0.01
RAM (y only) 4.06± 0.49 0.86± 0.01
RAM (X only) 7.87± 1.15 0.67± 0.08

Linear Regression 13.29± 0.99 0.46± 0.08
Random Forest 52.67± 2.73 −0.99± 0.10

KNN 7.68± 1.08 0.67± 0.06
KNN (retrained on domain memory) 8.22± 0.65 0.69± 0.02

Table 1: Comparison of RAM with the baselines.

5 Conclusion

RAM demonstrates promising results in in-context domain adaptation for tabu-
lar data, outperforming traditional machine learning models in synthetic domain-
shift scenarios. The architecture is able to effectively use its retrieval mechanisms
and the Domain-Aligned Memory training procedure. However, to fully validate
RAM’s robustness, future work should focus on testing the model in real-world
settings with diverse and complex domains.



References

[1] Tom B Brown. Language models are few-shot learners. arXiv preprint
arXiv:2005.14165, 2020.

[2] Noah Hollmann, Samuel Müller, Katharina Eggensperger, and Frank Hut-
ter. Tabpfn: A transformer that solves small tabular classification problems
in a second. arXiv preprint arXiv:2207.01848, 2022.

[3] Patrick Lewis, Ethan Perez, Aleksandra Piktus, Fabio Petroni, Vladimir
Karpukhin, Naman Goyal, Heinrich Küttler, Mike Lewis, Wen-tau Yih,
Tim Rocktäschel, et al. Retrieval-augmented generation for knowledge-
intensive nlp tasks. Advances in Neural Information Processing Systems,
33:9459–9474, 2020.

[4] Bernhard Schäfl, Lukas Gruber, Angela Bitto-Nemling, and Sepp Hochre-
iter. Hopular: Modern hopfield networks for tabular data. arXiv preprint
arXiv:2206.00664, 2022.

[5] Jannik Kossen, Neil Band, Clare Lyle, Aidan N Gomez, Thomas Rainforth,
and Yarin Gal. Self-attention between datapoints: Going beyond individ-
ual input-output pairs in deep learning. Advances in Neural Information
Processing Systems, 34:28742–28756, 2021.

[6] Gowthami Somepalli, Micah Goldblum, Avi Schwarzschild, C Bayan
Bruss, and Tom Goldstein. Saint: Improved neural networks for tabu-
lar data via row attention and contrastive pre-training. arXiv preprint
arXiv:2106.01342, 2021.

[7] Yury Gorishniy, Ivan Rubachev, Nikolay Kartashev, Daniil Shlenskii, Akim
Kotelnikov, and Artem Babenko. Tabr: Unlocking the power of retrieval-
augmented tabular deep learning. arXiv preprint arXiv:2307.14338, 2023.

[8] Noam Shazeer. Fast transformer decoding: One write-head is all you need.
arXiv preprint arXiv:1911.02150, 2019.

[9] Joshua Ainslie, James Lee-Thorp, Michiel de Jong, Yury Zemlyanskiy,
Federico Lebrón, and Sumit Sanghai. Gqa: Training generalized multi-
query transformer models from multi-head checkpoints. arXiv preprint
arXiv:2305.13245, 2023.

[10] Zechun Liu, Changsheng Zhao, Forrest Iandola, Chen Lai, Yuandong Tian,
Igor Fedorov, Yunyang Xiong, Ernie Chang, Yangyang Shi, Raghuraman
Krishnamoorthi, et al. Mobilellm: Optimizing sub-billion parameter lan-
guage models for on-device use cases. arXiv preprint arXiv:2402.14905,
2024.


