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Abstract. This paper examines how to improve interpretability of lan-
guage models in the context of fairness. While traditional concept learning
focuses on identifying the most important concepts for a task, this study
explores how to locate the representation of sensitive attributes in pre-
trained language models. We address challenges such as the potential low
importance and sparsity of sensitive attributes in training data, and the
limited amount of labeled data for this purpose. Our experiments evalu-
ate potential methods to obtain such identity concepts, considering factors
like label sparsity, generalizability, and the influence of different language
models on the representation of sensitive attributes.

1 Introduction

Concept learning has become a popular approach for interpretability as it al-
lows to attribute model predictions to abstract concepts rather than the input
space. Usually concept learning is applied to identify task-specific concepts that
are most relevant to explain model predictions [1, 2, 3]. In the scope of fair-
ness however, model decisions need to be put in context of sensitive attributes.
This requires additional cost for labeling. Especially in language models self-
supervised learning and automated labeling of datasets are popular to handle
large amounts of data at minimal labeling costs. By identifying how sensitive at-
tributes are represented in language models, one could improve transparency and
allow attribution of model decisions to sensitive attributes without respective la-
bels. This paper explores the usability of existing concept learning methods as
well as methods from the fairness literature to solve this problem. Specifically,
we aim to predict ”identity concepts”, which activate at mentioning of protected
groups or when dialect or language style hints at the author’s identity. Compared
to the usual use-cases for concept learning, learning these identity concepts is
presumably more challenging in the sense that (i) sensitive attributes should not
be among the most important concepts for task X and (ii) might be sparse in
the training data. Another challenge of concept learning is to find concepts that
generalize across datasets [4]. Bias subspaces [5, 6, 7] from the fairness litera-
ture are modeled from small sets of words or phrases representing the sensitive
attributes, instead of optimizing these to some dataset and thus might be more
suited in terms of generalizability.

We conduct experiments to evaluate the potential of bias subspaces and
concept learning to discover identity concepts. Given the challenges mentioned
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before, we specifically investigate the influence of sparsity of identity labels and
the generalizability of learned concepts between datasets. Another aspect is the
influence of different language models, which might represent sensitive attributes
in different ways.

2 Foundations

In our experiments we consider two concept learning approaches: Concept Ac-
tivation Vectors and Concept Bottleneck Models. An alternative approach that
does not require learning are bias subspaces. All methods assume that concepts
are represented linearly in the embeddings of language models and provide user-
defined concepts. We do not consider unsupervised concept learning since it
cannot guarantee to deliver the identity concepts.

Concept Activation Vectors Kim et al. [3] propose Concept Activation Vec-
tors (CAV) to learn user-defined concepts. They use a linear classifier to learn
the activation vectors of concept X based on training samples that include con-
cept X and random counter examples.

Concept Bottleneck Models Concept Bottleneck Models (CBM) [1, 2] realize
concept learning by introducing an additional concept bottleneck layer before the
prediction head. Using a contrastive loss l = λlc + lp, the model is guided to
optimize the prediction loss lp while aligning the concept representation with
user-defined concepts using concept loss lc.

Bias subspaces Under the hypothesis that word embeddings encode semantic
similarity by similarity in the vector space, researchers proposed to measure
social bias by the relation of terms describing protected groups in the embedding
space[5, 6, 7]. By contrasting over embeddings for terms of different protected
groups they obtain bias directions or bias subspaces. We follow the approach of
SAME [7], which allows us to construct bias spaces using an arbitrary amount of
protected groups (other than [6]) while maintaining interpretability of the bias
space (as opposed to [5]). Precisely, given n protected groups for some sensitive
attributes, we define the concept for group i by ai = êi−µ where êi is the mean
of embeddings chosen to represent group i and µ = 1

n

∑n

j êj. For the sake of

interpretability we do not enforce the bias space to be orthonormal (as in [7]).

3 Experiments

3.1 Setup

3.1.1 Datasets

In the experiments, we use four dataset with labels for protected groups: (i)
A supervised version of the BIOS dataset [8, 9] for occupation classification on
biographies with binary gender labels, (ii) the TwitterAAE dataset [10] with
tweets labeled as either african american or ’white’ english, (iii) the CrowS-
Pairs dataset [11], a collection of stereotypical phrases for bias evaluation in
masked language modeling, and (iv) the Jigsaw Unintended Bias dataset [12]



for toxicity detection in comments. While BIOS and TwitterAAE provide single
binary identity labels, CrowS-Pairs and Jigsaw follow a multi-label approach.
In CrowS-Pairs every sample is assigned at least one identity label, though the
groups are highly imbalanced. Similarly in Jigsaw identity labels are imbalanced,
but in addition a majority of samples does not have any positive label at all. In
Jigsaw and CrowS-Pairs we only considered protected groups with a minimum
amount of positive samples to avoid random effects. For further details, see our
implementation on Github1.

3.1.2 Language Models

We consider encoder and decoder language models from Huggingface and a state-
of-art embedding model from OpenAI (for details see 1). All language models
were used in their pretrained state to obtain text embeddings. For the Hugging-
face models we used both mean and cls pooling. In models without [CLS] token,
the cls pooling was mimicked by adding a [CLS] token at the end of the input.

3.1.3 Experiment Design

To evaluate the robustness to label sparsity and availability, we evaluate CAV,
CBM, and bias subspaces on a variety of datasets and protected attributes (see
3.1.1). For CAV and CBM we further distinguish cross-dataset transfer against
training and testing on splits of the same dataset. The bias subspaces are
dataset-independent, so we do not need to make the distinction. The BIOS
dataset provides only gender concepts, TwitterAAE race concepts (in the form
of dialect), while Jigsaw and CrowS-Pairs include concept labels for gender, eth-
nicity, religion and disability. Hence, cross-dataset transfer can be done between
two or three datasets per protected attribute. We report Pearson correlations of
concept activations with the ground-truth labels of protected groups. For CAV
and CBM, we can easily derive binary concept labels from the concept activa-
tions, and thus report F1 scores. For bias subspaces determining the threshold
is not trivial. The implementation details for the concept methods follow. For
further details, see our implementation1.

CAV: The CAVs are obtained by training a Logistic Regression in a one vs. rest
scheme for each protected group. Concept activations of unseen inputs are then
calculated using the dot product of CAVs and the input. CAV can be applied
to any dataset where concept labels are available.

CBM: We realize the CBMs by two parallel concept layers: One for the identity
concepts, which is optimized by the concept loss, and another one that is uncon-
strained. The stacked concepts are then fed into a 2-layer MLP for predictions.
We select λ = 0.5. The output of the identity concept layer is taken as concept
activations. Since concepts and predictions are optimized jointly, CBMs were
only trained on the BIOS and Jigsaw dataset, where class labels are available.

Bias subspaces: We construct simple sets of defining terms for the protected
groups used in the training of CAV and CBM (e.g. binary gender, ethnicity

1https://github.com/HammerLabML/PreSeCoLM/tree/esann25
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Fig. 1: Boxplot of Pearson correlations of concepts with ground truth labels. R
values are aggregated over different datasets, models and pooling strategies.

from a US perspective). While we could easily extend the subspaces (e.g. non-
binary gender) this might harm the comparability. Similarly to CAV, concept
activations are computed by the dot product with the new input.

3.2 Results

Figure 1 gives an overview of Pearson correlations, aggregated over different
datasets and models including both the transfer and non-transfer scenarios. We
observe that correlations vary strongly between the different model types and
sensitive attributes. Particularly, we report stronger correlations for the gender
and religion concepts compared to race and disability. Overall, the concept
learning methods deliver slightly higher correlations. Yet, there are cases where
the bias subspaces perform equal or almost equally well. When closer inspecting
the results, we find strong variations depending on the datasets, cross-dataset
transfer, the protected groups (of the same attribute) and the models and pooling
methods. Thus, we investigate these aspects in more detail.

3.2.1 Concept learning methods struggle with concept transfer

Table 1 shows the F1-scores per dataset (mean over different sensitive attributes)
for CAV and CBM when trained on the same dataset or being transferred from
another dataset (T). The transfer results are further aggregated over all possible
transfer cases. We observe a significant drop of F1-scores in transfer scenarios.
This is most obvious for BIOS. While both methods almost perfectly predict
gender when trained and tested on BIOS, they fail when transferred from or to
other datasets. The low correlations on TwitterAAE can be explained by the fact
that concepts were transferred from ’mentioning of racial attributes’ (Jigsaw/
CrowSPairs) to dialect. Since CBM could not be trained on TwitterAAE, we
only report transfer results for CAV, too.

3.2.2 Concept predictability varies between datasets

Figure 2 shows the Pearson correlations for gender concepts separated by dataset.
This emphasizes that some datasets are more challenging than others. In par-
ticular, the concepts are easy to learn on BIOS compared to CrowS-Pairs and
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Fig. 2: Pearson correlations of gender concepts with ground truth labels.

Jigsaw. This can be explained by the multi-labels, different density and imbal-
ance of identity labels (see Section 3.1.1). Despite using positive class weights
for the concepts in the training process, the F1-scores and correlations remain
limited. While bias subspaces are not affected by label imbalanced, the simulta-
neous presence of two groups (e.g. male and female) is an issue since the gender
concepts were derived by contrasting between these two groups.

3.2.3 Concept learning favors frequent labels; bias subspaces marginalized groups

To further highlight the strengths of bias subspaces and concept learning, we look
into the concept correlations for specific protected groups. Unsurprisingly CAV
and CBM perform best on those groups that are more frequent in the training
data. On the other hand, bias subspaces give better estimates for marginalized
groups compared to the majority group. This accounts for a lot of variance in
Figures 1 and 2.

3.2.4 Concept quality varies between language models and pooling methods

We observe differences in the performance of encoder, decoder and embedding
models. In general, the concepts of the embedding model achieve the highest
correlations. This is not surprising, considering that the embeddings are much
larger (factor 1.5 to 2 compared to Huggingface models) and thus are more
likely to represent these concepts linearly. Other than that, concepts of en-
coder outperform the decoder models, and concepts of mean pooled embeddings
outperform those of cls pooled embeddings.

Table 1: Concept F1-scores for CAV and CBM for the given dataset and sensitive
attribute. (T) indicates that concepts were learned on a different dataset.

dataset CAV CAV (T) CBM CBM (T)

BIOS 0.91± 0.023 0.45± 0.111 0.92± 0.024 0.11± 0.004
TwitterAAE n.a. 0.08± 0.016 n.a. 0.005± 5e− 5
jigsaw 0.38± 0.034 0.23± 0.025 0.43± 0.051 0.22± 0.004
CrowS-Pairs n.a. 0.37± 0.043 n.a. 0.45± 0.060



4 Discussion

The experiments show that concept learning methods highly depend on the
availability and density of identity labels for a specific downstream task. While
bias subspaces are not dataset-specific and might generalize better, none of the
methods produced convincing results out-of-the-box. One central aspect that
needs to be considered is the language models’ influence and whether non-linear
methods are more suitable to discover identity concepts. Based on the findings
in this paper, future work could explore several directions: (i) addressing the
label imbalance issue in concept learning methods, (ii) comparing linear and
non-linear methods for concept retrieval, (iii) investigating how bias subspaces
could be improved to identify majority groups and handle simultaneous presence
of same-attribute groups, (iv) focusing more on large models or models optimized
for embeddings.
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