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Abstract. We analytically and numerically investigate the expressivity
and generalization ability of quantum kernel models. We consider proto-
typical parallel encoding strategies and show that they give rise to simple
universal forms of quantum kernels. By using qubit-dependent data re-
scaling schemes, we can exponentially vary the spectral content of the
kernel and thereby control its simplicity bias. We obtain analytical results
on the kernel eigenspectrum and connect it to theories of kernel generaliza-
tion, which allow us to study the influence of expressivity on generalization
error.

1 Quantum Kernel Theory

Quantum kernels have been recognized as an attractive approach to NISQ-era
quantum machine learning that avoids the optimization challenges often encoun-
tered in parameterized quantum models [1]. A kernel is a measure for similarity
between two input data points x, y, evaluated using an inner product after a
projection into a suitable high dimensional feature space [2]. In the quantum
case, the mapping into the feature space is achieved by encoding an input da-

tum x ∈ Rd in a quantum state |ψ⟩ ∈ C2N of an N -qubit Hilbert space H via a
feature map

|ψ(x)⟩ = URS(x)|Φ0⟩. (1)

Here |Φ0⟩ denotes the initial state of the quantum system, S(x) is a data en-
coding unitary and UR is an arbitrary unitary operator which represents gate
operations or time evolution. The corresponding quantum kernel [1] is given as

K(x,y) = |⟨ψ(x)|ψ(y)⟩|2 = |⟨Φ0|S(x)†S(y)|Φ0⟩|2. (2)

Note that any data-independent unitary operator, such as UR, acting after the
data-dependent embedding, cancels out in the kernel.

We focus in the following on parallel Pauli encoding schemes of the form

S(x) =

N⊗
j=1

exp(−i2πxjcjσp
j ), (3)

where each qubit encodes one datum xj (thus d = N) and the Pauli matrix σp
j

(p ∈ {x, y, z}, identical for all qubits) acts on the jth qubit and trivially on all
others. The scaling factors cj ∈ R+ represent characteristic data length scales



Figure 1: Illustration of the feature map con-
sidered here. A non-trivial unitary UI can be
chosen to transform the N -qubit ground state
|0⟩ into a different initial state (e.g., UI = H⊗N ,
resulting in an equal superposition state). Data
x ∈ RN is encoded in parallel via the uni-
taries Sj(xj) [see Eq. (3)]. Any additional data-
independent unitaries such as UR are immate-
rial for the kernel.

(possibly different for each qubit), which, in the context of kernel methods, are
also known as bandwidths [2, 3]. The basic feature map is illustrated in Figure
1.

Beside the bandwidths, another source of expressiveness of a quantum model
is provided by the choice of initial state |Φ0⟩. We consider here the N -qubit
ground state |Φ0⟩ = |0⟩⊗N as well as the uniform superposition state |Φ0⟩ =
1√
N

∑N−1
k=0 |k⟩ = H⊗N |0⟩⊗N (with H denoting the Hadamard operator). If

p = z and |Φ0⟩ is the ground state as well as if p = x and |Φ0⟩ is the uniform
superposition state, one finds K(x,x) = 1. In all other cases, one obtains a
non-trivial translation invariant quantum kernel:

K(x,y) = K(x− y) =

N∏
j=1

cos2 ((xj − yj) cjπ) . (4)

This form of the kernel, in fact, applies to all initial states and encoding schemes
considered here. In principle, a kernel is a purely classical object and can in
simple cases be studied further with established techniques [2]. A quantum ad-
vantage may arise for kernels derived from complex circuits which are classically
intractable but may be efficiently estimated using quantum hardware.

1.1 Expressivity

In order to study the expressiveness of the quantum model, we encode the same
datum into each qubit, i.e., we take xj=1,...,N = x ∈ R, but allow for different
bandwidths, characterized by the three encoding schemes listed in Table 1 [4].
The kernel then takes the form of a one-dimensional Fourier series:

K(x− y) =
∑
ω∈Ω

bωe
iπω(x−y) =

∑
ω∈Ω,ω≥0

Bω cos(πω(x− y)) (5)

where the frequency values are listed in Table 1. For the ternary encoding the
ω-dependence of bω is given by

A(ω,N) :=


2N , for ω ∈ B(0)

2N−1 , for ω ∈ B(1)

2N−j , for ω ∈ B(j)

(6)



Encoding Coefficients (k = 1, 2, . . .) Spectrum ω ∈ Ω Coefficients bω

Hamming ck = 1
2 {−N,−N + 1, . . . , N} 4−N

(
2N

N+ω

)
Binary ck = 1

2 · 2k−1 {−2N + 1, . . . , 2N − 1} 4−N (2N − |ω|)
Ternary ck = 1

2 · 3k−1 {−⌊ 3N

2 ⌋, . . . , ⌊ 3N

2 ⌋} 4−NA(ω,N)

Table 1: Encoding schemes and frequency content of the quantum kernel. The
degeneracy of each frequency ω is given by the value of the coefficient bω in the
expansion in Eq. (5). ⌊x⌋ represents the largest integer less or equal to x and
A(ω,N) is defined in Eq. (6).

where B(0) := 0, B(1) := {3α|α ∈ {0, 1, . . . , N − 1}} and for j ≥ 2

B(j) := {±3α1 ± · · · ± 3αj | 0 ≤ αn ≤ N − 1 and αn < αm for 1 ≤ m < n ≤ j}. (7)

For all encodings, the (real-valued) coefficients resulting from the trigonometric
expansion of Eq. (4) have the property bω = b−ω, hence Bω = 2bω for ω ̸= 0,
and B0 = b0. Interestingly, the kernel has the same Fourier spectrum as the
corresponding quantum model [4]. A generalization to handle multidimensional
data xj is provided by sequential data encoding circuits [5], which, however,
break translational invariance of the kernel, i.e., K(x,y) ̸= K(x− y, 0).

The typical shape of the kernel is illustrated in Figure 2(a,b). Asymptotically
for largeN , the kernel becomes insensitive to the data as it approaches a constant
K(x, y) → 1/2N for x ̸= y, while still K(x, x) = 1 due to normalization of the
state. This concentration effect can be mitigated by scaling the data accordingly
[3]. With increasing order of encoding, the spectrum not only covers a broader
range of frequencies, i.e., larger expressiveness, but also becomes flatter, giving
similar weight to high and low frequency components [see Figure 2(c)].

(a) (b) (c)

Figure 2: (a,b) Shape of the kernel (4) for N = 2 and 10 qubits and various
encodings. (c) Fourier amplitudes bω of the kernel for various encodings.



Encoding Eigenvalues λs λs = corresp. ω(s) Degeneracy Nλ

(# nonzero)

Hamming {0} ∪
{
4−N

(
2N
s

)}
, s = 0, 1, . . . , N bs−N s−N 2-fold† 2N + 1

Binary {0} ∪
{
4−Ns

}
, s = 1, 2, . . . , 2N b2N−s 2N − s 2-fold† 2N+1 − 1

Ternary {0} ∪ {4−N2s}, s = 0, 1, . . . , N bB(N−s) B(N − s) 2N−s
(
N
s

)
3N

Table 2: Eigenspectrum of the kernel. The possible eigenvalues (indexed by s ∈
N0) directly correspond to the Fourier expansion coefficients bω in Eq. (5). The
mapping between s and ω is not simple in the ternary case due to the non-trivial
degeneracy (multiplicity), see Eq. (7). †Exceptions from the 2-fold degeneracy
of each eigenvalue occur for ω = 0, which is 1-fold degenerate (corresponding to
the largest eigenvalue), and λ = 0, which has a degeneracy of 4N −Nλ. In the
ternary case, the 1-fold degeneracy of the largest eigenvalue is accounted for by
the stated expression.

1.2 Eigenspectrum

The generalization behavior of a kernel model is controlled by its eigenspec-
trum [6]. Mercer’s theorem allows to diagonalize the kernel with respect to the
eigenfunctions of the corresponding kernel-dependent integral operator

T [f ] (y) =

∫
p(x)K(x, y)f(x)dx, (8)

with data distribution p(x). Hence, if T [ϕs] (y) = λsϕs(y) we get

K(x, y) =
∑
s

λsϕs(x)ϕ
∗
s(y) (9)

with L2
p-orthonormal eigenfunctions ϕs.

Unless otherwise mentioned, we assume the data to be uniformly distributed

on [−1, 1]. For m,n ∈ Z we get 1
2

∫ 1

−1
dxeiπm(x−y)e−iπnx = δm,ne

−iπny, which

implies ϕs(x) = eiπω(s)x as kernel eigenfunctions with nonzero eigenvalues λs =
bω(s) (see Table 2). The nullspace of T , corresponding to λ = 0, is infinite-
dimensional and consists of functions orthogonal to the ϕs including, e.g., all
higher-order Fourier modes eiπρx with ρ /∈ Ω. This directly leads via the first
equation in (5) to the Mercer decomposition (9). An alternative set of eigen-
functions is given by sin(πωx) and cos(πωx), for ω > 0. This follows from the

fact that, for g ∈ {sin, cos}, 1
2

∫ 1

−1
dx cos(πm(x− y))g(πnx) = 1

2δm,ng(πmy).
The eigenfunctions of a kernel define the type of target functions that can be

learned, which in this case are functions representable by their Fourier expansion
up to degree |Ω|. The distribution of kernel eigenvalues, see Table 2(c), indicates
the simplicity bias of the model: kernels with Hamming encoding are dominated
by a few large eigenvalues and thus able to learn only rather simple functions,
whereas kernels with ternary (or higher order) encodings have many small eigen-
values and can thus represent complex functions, at the risk of overfitting noise



[2]. Note that the maximum possible number of nonzero eigenvalues Nλ = 3N

is reached only for ternary and higher-order encodings ck ∝ mk−1 with m > 3.

2 Kernel regression

We now study the interplay between the expressivity of the kernel, as character-
ized by its frequency content, and its generalization behavior using the theory of
[6, 3] and the results of Section 1.2. To this end, we consider (noiseless) kernel
regression on a random Fourier series of degree D,

F (x) =

D∑
n=−D

rne
iπnx = r0 + 2

D∑
n=1

rn cos(πnx), r−n = rn ∈ R (10)

i.e., we fit the model

f(x) =
∑
j=1

αjK(xj , x) (11)

via the weights α to a dataset {xj , yj = F (xj)}j=1,...,P , where the xj ’s are
uniformly sampled within [−1, 1] and the rn are fixed Gaussian i.i.d. random
numbers with a variance of O(1). The optimal solution of this problem is given
by [2]

α∗ = yT (K+ λ1)−1, with Kij ≡ K(xi, xj), (12)

where λ is a regularization parameter. Notably, due to the structure of the kernel
[Eqs. (5) and (9)], this is mathematically equivalent to performing Ridge regres-
sion with the model f(x) = wTϕ(x), where w ∈ R|Ω| are adjustable weights and
the feature vector ϕ(x) = [eiπωnx]n=1,...,|Ω| is constructed from all |Ω| Fourier
modes of the kernel (see Table 1).

Figure 3 illustrates the typical behavior obtained in kernel regression. In
the case of N = 4 qubits, the Hamming encoding, having a frequency content
|Ω| = ωmax = 4 < D, is not expressive enough to fit a Fourier series with D = 10
random coefficients, in contrast to the binary and ternary encoding kernels. If
|Ω| ≥ D and the training error is small, it follows from kernel theory [6] that a
small generalization error requires P ≳ Nλ samples (see Table 2). This implies
that low-order encoding schemes can achieve good generalization with fewer
training samples than higher order ones. As illustrated in Fig. 3(c), a target
function that cannot be represented by Eq. (11) or, equivalently, has overlap
with eigenfunctions pertaining to a vanishing eigenvalue (λ = 0), acts similar to
noise in the test error Eg and produces a peak at P = Nλ. Note the abrupt
transition of Eg(P → ∞) from 0 to a nonzero value (determined by magnitude
of overlap with the λ = 0 eigenmodes) at D = Nλ.

3 Conclusions

We find that quantum feature maps based on parallel rotational data encoding
and either ground or uniform superposition initial states generally lead to a



(a) (b) (c)

Figure 3: (a) Illustration of under-/ overfitting behavior in kernel regression for
Hamming, binary, and ternary encodings (N = 5 qubits and P = 150 samples).
(b) Train (broken lines) and test error (solid lines) for regression with the kernel
in Eq. (4) for N = 4 qubits as a function of sample number P . The target
function (dashed in (a)) is a random Fourier series of degree D = 10. The
regularization parameter is λ = 10−5, but quantitatively similar results are
obtained for any value 0 < λ ≪ 1. (c) Sample number dependence of the
test error Eg (for a binary encoding kernel) for varying degrees D of the target
function [Eq. (10)] (relative to the number of nonzero eigenvalues Nλ). The
dashed curve shows Eg for a noisy target (noise variance 1, D = 10).

‘universal’ form of the kernel [Eq. (4)]. Inspired by previous studies of quantum
ML models [7], we focused here on the encoding scheme as our main source of
expressivity and its effect on the generalization error. We have determined the
frequency and eigen-spectra of the kernel for various encodings and pointed out
some similarities to conventional quantum models [7, 4]. Focusing on kernel
regression, we characterized the trade-off between expressivity, generalization
ability, and sample number.
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