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Abstract.

Ongoing and forthcoming surveys promise great advances in our under-
standing of the Universe content and history, thanks to unprecedented
improvements in the size and precision of observation datasets. On a
cosmological scale, galaxies characteristics may be summarised by three
main features, namely their redshift, stellar content mass and star forma-
tion rate, evolving throughout their lifetime. They are usually estimated
from a set of photometric measurements, mapping their spectral emission.
In this context, we propose a machine learning approach where we first
evaluate redshift from the photometric data, and then merge it with them
through a feedback loop, for subsequent estimation of the three desired pa-
rameters. In spite of its simplicity, our approach matches the performance
of, and in some cases outperforms, significantly more complex previous
tools exploiting also images. It achieves correct estimates on the near to-
tality of instances for redshift and stellar mass, decreasing to about 70%
on the more difficult case of SFR estimation.

1 Introduction

Understanding galaxy evolution and its governing mechanisms is central to as-
trophysics, supported by extensive multi-wavelength datasets from surveys and
missions. The European Space Agency’s Euclid mission (www.euclid-ec.org,
[1, 2]) exemplifies this progress, offering visible and near-IR data for ∼ 1.5 bil-
lion objects and NIR spectra for > 35 million sources, covering ∼ 1/3 of the
sky. Key properties of galaxy evolution include redshift, stellar mass, and star
formation rate (SFR). These are traditionally derived via spectral energy dis-
tribution (SED) fitting, which compares observed data to theoretical models
[3, 4]. However, scaling this approach to massive datasets requires substantial
computational resources and expertise. Machine learning (ML) offers a powerful
alternative, enabling efficient and accurate estimation of physical properties, as
evidenced by the increasing adoption of such approaches within the astrophysical
community. This study focuses on ML-based estimation of redshift, stellar mass,
and SFR using photometric data within the Euclid mission’s framework: the sci-
entific objectives and overarching framework are defined in [5]. Our work utilizes
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the same dataset of real photometric data, with the permission of that paper’s
authors. In [6], we proposed a unified neural network for simultaneous redshift,
stellar mass, and SFR estimation, rather than implementing three dedicated
models, as done in [5], leveraging interdependencies among these properties.
Expanding on this, we introduce a novel approach where the network estimates
redshift and uses it as an input for subsequent estimation of the two remaining
desired parameters. This feedback mechanism seems to capture underlying cor-
relations, improving comprehensive parameter estimation. The obtained results
confirm that the image input components used in [5] and [6] are no more nec-
essary and good performance can be reached with a lighter, less computational
expensive architecture.

2 Dataset and Metrics

The data set used in our work was derived from the COSMOS2015 multi-
wavelength public catalogue [7]. The data is described in detail in [5], in terms
of dataset structure and characteristics, and is used without modifications in
our work. The custom catalogue is inspired to the Euclid Wide Survey [8], and
includes in a tabular form the four Euclid filters, i.e. IE , YE , JE , HE with the
addition of the u band from the Canada-France Imaging Survey (CFIS), and of
the Sloan Digital Sky Survey (SDSS) magnitudes g, r, i and z. We use all nine
photometric data, i.e. the four Euclid ones plus the five ground-based ones, as
in [5], as inputs to our system in order to diagnose redshift, stellar mass and
SFR.

The Mean square error (MSE) is used as training loss function and to eval-
uate the quality of the model. Several metrics are also used to measure the
performance, following [5] and references therein, i.e. the fraction of outliers
(fout), the bias and the Normalised Median Absolute Deviation (NMAD). The
fraction of outliers fout corresponds to the amount of over- or under-estimated
data, relative to the size of the dataset. The bias and NMAD are used to provide
an indication of the statistical distribution of the estimates. In particular, it is
expected that this distribution is approximated by a Gaussian, so that ∆z indi-
cates the redshift mean discrepancy (ideally zero), while the NMAD is related
to its standard deviation. In the following, the subscript ‘in’ refers to the target
values, and the subscript ‘out’ refers to the estimated values.

Redshift (z ). As in [5], a prediction is called an outlier if
|zout−zin|

1+zin
> 0.15.

Bias ∆z and NMAD are defined in eq.(1).

∆z = median

[
zout − zin
1 + zin

]
, NMAD = 1.48 median

[
|zout − zin|
1 + zin

]
(1)

Stellar mass (M∗). As in [5], we estimate for the entire sample the fraction
of outliers, defined as galaxies for which the stellar mass is overestimated or
underestimated by a factor two ( ∼ 0.3 dex): a mass prediction is considered an

outlier if
∣∣∣log10 (M∗,out

M∗,in

)∣∣∣>0.3. Bias (∆M∗) and NMAD are defined in eq.(2).



Fig. 1: Diagram of the model architecture. We interleave linear transformations
with ReLU activation functions and dropout [9].

∆M∗= median

[
log10

(
M∗,out

M∗,in

)]
, NMAD=1.48 median

[∣∣∣∣log10(M∗,out

M∗,in

)∣∣∣∣] (2)

Star Formation Rate (SFR). Similarly to the stellar mass case, we de-
fine outlier the estimation with SFR incorrect by at least a factor two, i.e.∣∣∣log10 (SFRout

SFRin

)∣∣∣ > 0.3. Bias (∆SFR) and NMAD are defined in eq.(3):

∆SFR=median

[
log10

(
SFRout

SFRin

)]
, NMAD=1.48median

[∣∣∣∣log10(SFRout

SFRin

)∣∣∣∣] (3)

3 Experiments and Results

In order to estimate redshift, stellar mass and SFR, in our experiments we use
a multilayer perceptron, named Z-MLP, enhanced with a feedback loop (see
fig.1), in order to capture the existing correlations evidenced in fig.2. In the first
feedforward phase, the nine photometric bands described in sec.2 are projected to
the latent dimension dh, and then refined through a series of hidden layers (2 our
case). In the obtained triple y1, we collect the first element as predicted redshift,
and we project its concatenation with the 9 input filters to the hidden dimension.
The new representation is processed through the same layers and results in
the new triple y2, from which we identify stellar mass and star formation rate
estimations in the second and third elements.

The dataset is split into training, validation and test sets, respectively sized to
90%, 5% and 5% of the total, so that 24,605 instances are used for training, 1,367
for validation and 1,367 for test. Data normalization and removal of anomalous
data are performed. The training loss is the sum of the MSEs of the three target
predictions. In all experiments, a batch of 1024 data instances is used. For
each experiment, the training is carried for 3000 epochs. The validation loss is
tracked, and at the end of training the model with the best overall validation
performance is saved.

This system is trained using five different seeds. In this experiment we con-
sider the best run, i.e. the run achieving the lowest value of the validation loss
function (hereafter identified with subscript bst), and the average of the five runs
(identified with subscript avg), which provides an indication of the spread which



(a) Correlation between the 4 Euclid filter mag-
nitudes and galaxy properties.

(b) Correlation between galaxy prop-
erties.

Fig. 2: Correlation in the COSMOS-DASH dataset. Scatter plots display the
correlation of a given measure (input filter or target value) to a galaxy property.
Colors towards yellow represent more densely populated areas. Last row of fig.
2a, 2b display the data distribution with a skewed normal approximation over a
50-bins histogram.

might be expected on the results. The experiments are performed on a Linux-
5.13.0 computer equipped with an Intel Core i7 8th Gen processor, 8 CPUs and
a NVIDIA TITAN RTX GPU (24gb). The software is written in Python 3.10.15
with Pytorch. The time required to train the network is about three hours. The
code will be shared after publication.

We compare outputs from different models in terms of outlier fraction, bias
and NMAD as described in Section 2. For the sake of a better understanding we
report i) the results from [5] for the SED fitting model and CNN, where CNN
is a multi-modal system that exploits also images and ii) the result from [6] for
MLP and Fusion Network (FN), which exploits images too.

Redshift. The main features of our redshift estimation are reported in Table 1 in
statistical terms, and illustrated in Fig. 3a. All ML models achieved significantly
better results than the reference SED fitting method, and in particular for Z-
MLP the fout is three orders of magnitude smaller. MLP is robust in estimating
the redshift, with fout, bias and NMAD in line with FN. The best model turns
out to be Z-MLP, featuring no outlier as highlighted in Fig. 3a, where the
predicted redshift values are always within the ∆z cone boundaries. Besides,
∆z results are the lowest ones.
Stellar mass. The main features of stellar mass estimates are reported in Table



Model Redshift (z) Stellar Mass (M∗) Star Formation Rate (SFR)

fout ∆ NMAD fout ∆ NMAD fout ∆ NMAD

SED 0.127 -0.002 0.045 0.135 0.002 0.12 0.62 -0.06 0.64

CNNavg 0.003 -0.001 0.021 0.010 0.001 0.04 0.45 -0.06 0.39
FNavg 0.001 -0.002 0.009 0.005 -0.001 0.04 0.30 0.001 0.24
MLPavg 0.002 -0.001 0.008 0.006 0.007 0.03 0.34 -0.01 0.27
Z-MLPavg 0.0007 -0.0004 0.010 0.007 -0.008 0.03 0.30 -0.006 0.26

CNNbst 0.002 0.005 0.028 0.011 0.006 0.05 0.44 0.02 0.38
FNbst 0.0007 -0.002 0.011 0.004 -0.01 0.05 0.30 0.02 0.25
MLPbst 0.002 -0.001 0.011 0.006 0.005 0.05 0.34 -0.02 0.27
Z-MLPbst 0.0000 -0.0005 0.013 0.004 -0.009 0.04 0.29 0.009 0.26

Table 1: Results for redshift, stellar mass and SFR estimation.

(a) Redshift (b) Stellar mass (c) Star formation rate

Fig. 3: Z-MLP diagnostics performance on redshift (left), stellar mass (middle)
and SFR (right).

1 and illustrated in Fig. 3b. The SED model provides the worst results among
the tested cases. Z-MLP has slightly better performance than MLP and similar
performance with FN on outliers fout, with a somewhat worse bias ∆M∗ and
comparable, or slightly better, NMAD.
SFR. The results for the SFR estimation are reported in Table 1 and in Fig 3c.
Our method leads to significant improvements on outliers (fout) over the SED
fitting method (62%), and performs better than FN and MLP models. Also, the
bias and NMAD are significantly smaller than that from other techniques, with
the exception of FN.

Reduced compute time is the major advantage of the proposed Z-MLP: train-
ing time for one epoch require less than 4 seconds, while 3 minutes for the FN.
Total inference time on the test set is around one second for Z-MLP and 17
seconds for FN. These data highlight a time saving of 98% in training, and
94% in inference. The notable improvements achieved with our Z-MLP solution
highlight the effectiveness of a straightforward neural network approach that:

• uses only photometric features to estimate the properties of target galaxies,
so representing a much faster inference method.



• incorporates a feedback loop that integrates the redshift prediction into
the estimation of the other correlated parameters.

4 Conclusions

The result improvements achieved appear to be related to two different aspects,
i.e. the simultaneous estimation of the three physical properties and the use of
the feedback loop, which may be expected to bear connections in classes of ob-
jects, giving our tool a chance to learn the ”shape” underlying our data distribu-
tion. In general, Z-MLP achieves best results with respect to the simple, similar
architecture MLP and comparable results w.r.t. FN, but needing extremely less
training and inference processing times. It provides competitive performance
with significantly reduced complexity, since it only works on photometric data
without exploiting galaxy images, whose processing is computationally demand-
ing. It appears as an interesting tool which may be conveniently retained for
comparison and verification purposes. The SFR estimation still remains much
more noisy than redshift and stellar mass, a characteristic possibly implicit in
the natural spread of SFR throughout the dataset.
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