Generalized Stochastic Pooling

Davide Bacciu and Francesco Landolfi

Universita di Pisa - Department of Computer Science
Largo Bruno Pontecorvo, 3, 56127, Pisa - Italy

Abstract. Pooling layers play a critical role in Convolutional Neural
Networks by reducing spatial dimensions and enhancing translation invari-
ance. While conventional methods like max pooling and average pooling
are effective, they can respectively amplify noise or dilute important fea-
tures. Stochastic pooling introduces probabilistic sampling to improve
generalization but is susceptible to biases from outliers, often mimicking
max pooling in such cases. To address these limitations, we propose a
generalization of stochastic pooling that introduces a tunable parameter to
control the balance between uniform sampling, stochastic pooling, and max
pooling. Experiments on multiple datasets demonstrate that uniform sam-
pling outperforms the biased one, achieving a favorable trade-off between
regularization and performance.

1 Introduction

Convolutional Neural Networks (CNNs) [1, 6] have revolutionized the field of deep
learning by providing state-of-the-art performance in various domains such as
computer vision, natural language processing, and medical imaging. A hallmark
of CNN architectures is their ability to effectively process and extract hierarchical
features from high-dimensional data through a combination of convolutional,
pooling, and fully connected layers. Among these components, pooling layers
are integral to achieving translation invariance, reducing spatial dimensions, and
enhancing computational efficiency.

Pooling operations, such as max pooling [9] and average pooling [1, 6], have
been instrumental in CNNs. Max pooling selects the most prominent feature
within a region, while average pooling computes the mean value, thus offering
distinct benefits and drawbacks. Max pooling emphasizes strong activations but
risks losing subtle details and propagating noise, whereas average pooling smooths
feature maps at the cost of diluting salient features. To address these limitations,
alternative pooling strategies have been proposed, including stochastic variants,
which introduce randomness in feature selection to improve generalization and
mitigate overfitting [2, 10, 11].

Stochastic pooling [10] samples features based on their relative magnitudes,
striking a balance between max and average pooling by allowing all features within
a region to influence the output probabilistically. However, the effectiveness of
stochastic pooling is constrained by its inherent sensitivity to extreme values,
which can cause it to mimic max pooling behavior under certain conditions.

This paper introduces a generalization of stochastic pooling that incorporates
a tunable parameter, «, to control the degree of randomness and mitigate over-
reliance on dominant features. By varying «, the method transitions smoothly be-
tween uniform sampling, standard stochastic pooling, and max pooling, enabling

greater flexibility and adaptability to diverse learning tasks. We systematically
evaluate this approach on benchmark datasets and demonstrate its capacity
to enhance model performance and robustness compared to existing pooling
strategies.

2 Generalized Stochastic Pooling

The architecture of a typical CNN consists of three primary components: convo-
lutional layers, performing convolution operations on the input data to extract
spatial and temporal features, pooling layers, which are used to downsample
feature maps generated by convolutional layers, and fully connected layers, that
make the final predictions or classifications.

Pooling functions as a sliding window over the input data, aggregating local
regions into single representative values. One of the most common aggregation is
maz pooling 9], which selects the maximum value from each region of the feature
map. Formally, for an input feature map X € RE*T*W where C is the number
of channels and H and W are the height and width, the max pooling operation
is defined as Ye;; = max(, n)er,; Xemn, where R;; represents the region of size
k x k with top-left corner centered at (ik, jk) in the input feature map, where k
is the kernel size, and Y € REH W' g the downsampled output feature map,
of height H' = | H/k] and width W’ = |W/k]. Another common aggregation is
average pooling [1, 6], which computes instead the mean value of each region in
the feature map. This aggregation is defined as Y;; = |R;; |7t Z(m,n)eR“ Xemn,
where |R;;| is the total number of elements in the pooling region R” Max
pooling and average pooling have inherent limitations that can hinder model
performance. While max pooling may amplify noise and overlook subtler features,
average pooling tends to dilute significant features, leading to the loss of critical
details in tasks requiring high sensitivity or fine-grained distinctions.

Stochastic pooling. To overcome these issues, Zeiler and Fergus [10] proposed
stochastic pooling, a probabilistic pooling method inspired by max pooling which
introduces randomness during the downsampling process, which can help improve
generalization and reduce overfitting. In stochastic pooling, instead of taking the
maximum or mean value, a probability is assigned to each feature in the pooling
window, and a single value is sampled according to these probabilities. Formally,
given a pooling region R;;, the probability pcm» of selecting a value X, for a
given channel c is proportional to its magnitude, that is

D _ Xemn
cmn = .
Z(u,v)ERij Xeuw

Notice that this normalization is well-defined since the authors assume that all

the entries of the feature map X are positive. This is true for example whenever

the feature map is passed through a sigmoid or a rectified linear unit activation

function. Notice also that the normalization in Eq. (1) is performed channel-wise.
The output of the stochastic pooling operation is then sampled as

(1)

Yeii = Xemn where (m,n) ~ Categorical({Peuv } (u,v)eRy;)-

That is, every given pair of indices (u,v) is sampled with probability pe,, from the
categorical distribution. Notice again that the samples are drawn independently
for each channel.

At inference time, stochastic pooling needs to provide consistent and determin-
istic results since random sampling during prediction can lead to non-reproducible
outcomes. Similarly to dropout [8], instead of sampling a value randomly, the
output of each pooling region is set to the expected value of the distribution used
for stochastic pooling. This ensures inference to be deterministic and aligned with
the learned probability distribution from training. Hence, a weighted average is
performed as follows:

Ycij = E[}/cz]} = Z Pemn * Xemn (2)
(mn)ER;

where ¥ € RO*H W' i the downsampled output feature map at inference time.
This probabilistic weighting can be seen as a form of model averaging: during
training, stochastic pooling introduces randomness by sampling values from the
feature distributions of pooling regions. This randomness effectively trains the
model on slightly different representations of the same input, akin to training
an ensemble of models with different subsets of the data. At inference time,
instead, replacing the random sampling with the expected value aggregates the
contributions of all possible sampled outputs in a weighted manner, where the
weights correspond to their probabilities. This mirrors how model averaging
combines predictions from multiple models to produce a single, stable output.

Generalized stochastic pooling. When the feature maps contain an outlier with
a high magnitude, stochastic pooling behaves similarly to max pooling because
the probability of selecting the outlier becomes disproportionately large. This
phenomenon arises from the probability distribution used in stochastic pooling,
where each value’s likelihood is proportional to its magnitude: if one a feature
map M = maX(;,n)er,; Xemn 0 the pooling region is much larger than the
others, the probability of selecting it will approach 1, as the relative contributions
of smaller values become negligible. In this case, stochastic pooling is almost
certain to select Y ;; = M, mimicking max pooling behavior.

We can study this phenomenon more in depth by introducing in Eq. (1) a
randomness temperature o, which regulates how much a stochastic pooling layer
behaves as a max pooling one. This can be done as follows:

() _ |Xcmn|a

Pemin =

3)

Xcuv‘a

Z(’LL,'U)GR«L]‘

Here we also applied the absolute value to the feature maps to drop the positive-
ness assumption and, to avoid division by zero, we also clamp every entry of X
with a lowerbound of a small e = 1072, Furthermore, to avoid numerical errors,
in practice Eq. (3) is equivalently computed as

() __ (|Xcmn|/M)a . _
Pemn = with M = max |X u)‘
Z(U,U)ERij(|XCUU|/M)a (u,v)ER; o

One can easily see that, for &« = 0, we have a uniform sampling distribution,
with p0) = |R;;| ™ and that, at inference time, Eq. (2) reduces to classical
average pooling; for & = 1, we obtain a standard stochastic pooling; and for

a — 00 we have
1
lim pg‘;jz)n =< |Su|
e 0 otherwise,

if | Xemn| =M,

where Sy = {(u,v) € Rij | [Xeuww| = M}. Thus, during training, only the entries
having the maximum absolute value will be sampled. During inference, instead,
Eq. (2) will reduce to Ycij = M. Hence, for a — 00, stochastic pooling will
behave exactly as max pooling whenever the input feature maps are positive.

In the following, we will experimentally demonstrate that any choice of o > 0
(including o = 1, which corresponds to the original stochastic pooling setting)
adversely affects the model’s performance. This choice causes the model to
behave more like max pooling, thereby inheriting its limitations and becoming
more prone to overfitting.

3 Experiments

We tested stochastic pooling with varying values of @ € {0,1,2,4,8} on the
CIFAR-10, CIFAR-100 [5], and SVHN [7] datasets. We also tested several
baselines, namely strided convolution (i.e., downsampling with no pooling),
average pooling, max pooling, L2-norm pooling [4], fractional max pooling [2],
and S3 pooling [11]. In the experiments, we used a ResNet-like 3| architecture as
a single backbone model with different pooling layers depending on the selected
baseline. The architecture consists of 4 convolutional blocks of hidden dimensions
(32,64, 128,256) interleaved by 3 pooling layers of kernel size 2 each, followed by
a global pooling layer of the same type of the local ones and, finally, by a linear
layer. The convolutional blocks consist of 2 residual blocks of 2 convolutional
layers each. For fractional max pooling, we used instead a reduction ratio of 1/ V2
to introduce randomness (with a ratio of 1/2 it would behave as max pooling).
We trained all models for 100 epochs using batch size 128 with learning rate 0.001
and cross-entropy loss. We chose this setting during a preliminary evaluation on
a validation set (20% of the training set).

As a preliminary experiment, we repeatedly trained for 10 runs stochastic
pooling with different values of o on CIFAR-10 and plotted the average training
and validation curves on Fig. 1 (v = 0o means max pooling). We can clearly see
from the picture that the performance slowly degrades as « increases, with o = 8
obtaining almost the same performance of max pooling. It is also clear from the
picture how lower values of o mitigate overfitting, as the difference between the
validation and the training errors reduces with «, suggesting that the randomness
introduced by stochastic pooling acts as a form of regularization of the model.

In Table 1, we present the average classification error (calculated over 10
train/test runs) and the average forward pass time (measured over 100 runs) for
stochastic pooling and all baseline models. The results align with the findings from

20 1 @
< — 0
PREE !
g 2
= — 4
S 10 8
3
C-'E o0
Z 5 Type
) --=-=- Train

0- — Valid
0 20 40 60 80 100
Epoch

Fig. 1: Train and validation error on CIFAR-10 using different values of a.

CIFARI10 CIFAR100 SVHN time/batch

Strided 17.94+0.37 50.76+£1.53 5.494+0.25 3.59+0.62
AvgPool 13.424+0.38 43.17+0.54 4.56+0.20 3.63+£0.25
L2Pool 14.424+0.33 46.46+0.84 5.13+0.26 4.07+0.30
FractionalMaxPool 11.734+£0.28 39.824+0.68 4.06+0.13 3.93+£0.37
S3Pool 11.184+0.24 39.044+0.49 3.53+0.14 4.52+0.40
MaxPool+S3Pool 14.054+5.86 43.78+0.45 4.024+0.15 4.81+0.41

) 11.39+0.25 39.85+0.76 3.83+0.17 6.13+0.11

1) 12.214+0.50 40.39+0.50 4.26+0.18 7.21+0.28

StochasticPool (« =2) 12.83+0.42 41.80+0.62 4.57+0.17 7.26+0.49
StochasticPool (a« =4) 13.56+0.36 43.78+0.72 4.75+0.20 7.29+0.54
StochasticPool (« =8) 14.68+0.56 45.274+0.73 5.154+0.19 7.244+0.24
MaxPool (a = c0) 14.88+0.31 45.63+£0.86 5.10+0.16 3.68+0.24

StochasticPool (o =0
StochasticPool (o =

Table 1: Classification error (%, mean + std) and time required for a forward
pass (ms, mean =+ std) using different pooling strategies.

the preliminary experiments, showing that the classification error increases as «
grows. Stochastic pooling achieves its best performance at o = 0, outperforming
the original setting at a = 1. Conversely, the worst performance is observed at
«a = 0o, corresponding to max pooling. Among all models, the best performance
is achieved by S3 pooling, which slightly outperforms stochastic pooling. We
attribute this improvement primarily to the fact that S3 pooling, by selecting
random rows and columns, effectively performs a form of uniform pixel sampling.
However, unlike stochastic pooling, the selected coordinates are consistent across
all channels, thereby avoiding a “shuffling” effect of feature maps across different
pixels. It is worth noting, however, that the authors of S3 pooling included
a max pooling layer before their proposed downsampling method, which, as
shown in Table 1, resulted in worse performance. In terms of forward pass
time, we observed that stochastic pooling requires more time compared to the

baseline models, with the a = 0 setting being slightly faster due to its more
efficient implementation. However, it is important to note that, apart from S3
pooling (which we reimplemented), all other baseline methods benefit from native
C++/CUDA implementations, whereas our implementation of stochastic pooling
is currently in Python. Furthermore, stochastic pooling with a = 0 at inference
time is as fast as average pooling, which is the second fastest-performing model.

4 Conclusions

In this work, we introduced a generalized stochastic pooling that incorporates a
tunable parameter a to control the balance between uniform sampling, stochastic
pooling, and max pooling. Through extensive experiments on CIFAR-10, CIFAR-
100, and SVHN datasets, we demonstrated that lower values of o mitigate
overfitting, improve generalization, and outperform the original stochastic pooling
(o = 1), as well as many established pooling methods. Our results highlight
the versatility of stochastic pooling, which adapts to varying task requirements
by modulating randomness in the pooling process. The performance gains and
increased adaptability make this approach a valuable addition to the toolbox for
CNN design, paving the way for further advancements in pooling strategies.

References

[1] K. Fukushima. “Neocognitron: A self-organizing neural network model for a mechanism
of pattern recognition unaffected by shift in position”. In: Biological Cybernetics 36.4
(1980).

[2] B. Graham. Fractional Maz-Pooling. 2015.

[3] K. He, X. Zhang, S. Ren, and J. Sun. Deep Residual Learning for Image Recognition.
version: 1. 2015.

[4] ©O. J. Hénaff and E. P. Simoncelli. Geodesics of learned representations. 2016.

[5] A. Krizhevsky, G. Hinton, and others. “Learning multiple layers of features from tiny
images”. In: (2009). Publisher: Toronto, ON, Canada.

[6] Y. Lecun, L. Bottou, Y. Bengio, and P. Haffner. “Gradient-based learning applied to
document recognition”. In: Proceedings of the IEEE 86.11 (1998). Conference Name:
Proceedings of the IEEE.

[7] Y. Netzer, T. Wang, A. Coates, A. Bissacco, B. Wu, A. Y. Ng, and others. “Reading
digits in natural images with unsupervised feature learning”. In: NIPS workshop on deep
learning and unsupervised feature learning. Vol. 2011. Issue: 2. Granada, 2011.

[8] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhutdinov. “Dropout:
A Simple Way to Prevent Neural Networks from Overfitting”. In: Journal of Machine
Learning Research 15.56 (2014).

[9] J. Weng, N. Ahuja, and T. Huang. “Learning recognition and segmentation of 3-D objects
from 2-D images”. In: 1998 (4th) International Conference on Computer Vision. 1993
(4th) International Conference on Computer Vision. 1993.

[10] M. Zeiler and R. Fergus. “Stochastic Pooling for Regularization of Deep Convolutional
Neural Networks”. In: (2013).

[11] S. Zhai, H. Wu, A. Kumar, Y. Cheng, Y. Lu, Z. Zhang, and R. Feris. “S3Pool: Pooling
With Stochastic Spatial Sampling”. In: Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition. 2017.

	Introduction
	Generalized Stochastic Pooling
	Experiments
	Conclusions

