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Abstract. Tensor Networks are a relatively new machine learning ap-
proach. The architectures proposed initially are inspired by approaches
from quantum many-body physics simulations. One common layout is the
matrix product state (MPS) also known as a tensor train optimized with
gradient descent techniques. We introduce a global normalization condi-
tion, so that the MPS represents a quantum state. We investigate two
optimization methods that find the locally optimal tensors and compare
them regarding their effectiveness. One is based on gradient descent and
the other on an adaptation of DMRG.

1 Introduction

Tensor networks (TN) originate from the field of quantum many-body physics
[1, 2]. They are used as a prominent method to simulate quantum systems
[3], and approximate their properties such as ground states [4]. Their main
advantage lies in their ability to approximate large quantum states with lim-
ited storage. Quantum-inspired tensor networks have found an application in
classical machine learning models, see [5].

The application of tensor networks to quantum machine learning connects
both fields [6]. To raise the whole potential of TN approaches developed in quan-
tum physics it is necessary to transfer the local optimization techniques, namely
Density Matrix Renormalization Group (DMRG), to the machine learning con-
text. In this work we explore how this DMRG approach with the underlying
Lanczos method to quantum machine learning. One challenge that arises, is
that quantum states and quantum channels have normalization conditions due
to quantum probability conservation [7].

The basic tensor network ansatz we investigate is inspired by [5]. However, we
introduce a normalization condition on the tensor network, such that contracting
it yields a normalized vector that may be mapped to a quantum state. We
then present how the gradient descent algorithm can be modified to take into
account this condition and how a modified DMRG algorithm can be applied for
optimization as well. The latter is based on a post processing step taking into
account the loss function of the machine learning problem. Finally, we compare
how the introduction of the normalization condition impacts the accuracy and
the loss, when classifying the MNIST dataset.



2 Tensor Network based Machine Learning

Our tensor network approach is based on an MPS similar to the method outlined
in [5]. Additionally, we introduce a normalization condition, such that contract-
ing the tensor network yields a normalized vector, see Fig. 1. Inference of this
setup can be run directly on a quantum computer: Either checking each label
|li〉 separately or maximally entangling system B with a readout site. The gener-
ating MPS can be applied as a quantum circuit following a translation method,
e.g. the one given by [8].

i i i i i i i i

MPS |Ψ〉
DB

data |di〉D label |li〉B

Fig. 1: Architecture of the underlying tensor network. The trainable part of
the setup is the MPS, here in blue. The encoded input data of datapoint i of
the dataset is represented by the orange tensors. The yellow tensor represents

the single site which serves as the output of the label.

To maintain a normalized MPS, we use site canonization while sweeping,
which is the process of optimizing the sites iteratively until the MPS converges
[3]. This approach is found both in gradient based learning [5] and in DMRG
[4]. To deal with complex quantum states, we modify the mean square error loss
function from [5] to be
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Here, |li〉B , the MPS |Ψ〉
DB

, andthe data representation |di〉D are normalized,
but the ML output |fi〉B is not. Given Eq. (2), we obtain the loss

L =
1

2
+

1

2N

N
∑

i=1

[

〈Ψ| (|di〉〈di|D ⊗ 1B) |Ψ〉 − 2Re
[

〈Ψ|
DB

(|di〉D ⊗ |li〉B)
]

]

.

As abbrevations, we define the Hermitian A and the vector b

A =

N
∑

i=1

|di〉〈di|D ⊗ 1B and b =

N
∑

i=1

|di〉D ⊗ |li〉B .



For local optimization, one needs locally effective variants As and bs on the site
s. They are obtained by removing the tensor of the respective site in the MPS
and contracting it with A or b, [5, 4]. Both A and As are positive semidefinite.
〈k|b〉 = 0 if |k〉 is in the kernel of A, otherwise a negative loss could be found,
which contradicts Eq. (1). Thus, from now on the kernel of A is removed from
A, when calculating A−1 |b〉. We use the same initialization procedure as [5] for
the normalized MPS to avoid vanishing gradients. Furthermore, a lookup table
of major building blocks of As and bs is maintained while sweeping. This ensures
that the sweep only depends linearly on the number of sites, but at the cost of
storage space.

3 Gradient descent with Normalization

The local optimization problem we tackle is given by

|Ψs〉 = argmin
|Ψ〉 ∀ 〈Ψ|Ψ〉=1

〈Ψ|As |Ψ〉 − 2Re(〈Ψ|bs〉). (3)

If |Ψs〉 is not normalized, the optimum is A−1 |b〉, see [9, 10]. Normalizing this
optimal solution directly does not yield the optimal solution for the problem
with the normalization constraint. This can be seen from the following example:

As =

(

2 1
1 4

)

and |bs〉 =

(

1
3

)

, with |Ψs〉 =

(

0
1

)

butA−1

s
|bs〉 ≈

(

0.14
0.71

)

A simple approach to solve the constraint problem is to use the gradient |g〉 =
As |Ψ〉 − |bs〉 to give a small update with step size α on |Ψ〉 and then normalize
afterwards. This is known as projected gradient descent [11]. Thus, we obtain

|Ψ′〉 =
|n〉

√

〈n|n〉
=

|Ψ〉 − α |g〉
√

(〈Ψ| − α 〈g|)(|Ψ〉 − α |g〉)
.

Thus, |Ψ〉 is updated along the negative gradient on the surface of the unit sphere
of |Ψ〉’s Hilbert space. One simple improvement of the approach is optimizing
the step size α. Setting the derivative of the loss w.r.t. α equal to zero yields
the condition

0 = Re(〈g′|n〉)Re(〈n|g〉)− Re(〈g′|g〉) 〈n|n〉 (4)

with the gradient |g′〉 of |Ψ′〉 obtained by the next iterative step. We disregard
the solution for 〈n|n〉 → ∞ as this is associated with an infinite step size α.
Calculating |g′〉 requires one additional matrix-vector multiplication As |g〉 that
can be reused to calculate |Ψ′〉 after the optimal α is found.

We obtain the derivative of Eq. (4) by using the product rule and the deriva-
tives:
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We then solve for α with Newton iterations. A local maximum α 6= ±∞ may
exist. To avoid it, α = 0 is chosen as the starting point of the Newton iteration.



4 A Modified DMRG Algorithm

Optimization techniques based on Krylov subspaces have shown to be far more
effective than simple gradient descent [10]. Exemplary methods are conjugate
gradient descent algorithm, and the Lanczos algorithm used in DMRG. However,
DMRG with the underlying Lanczos algorithm does not involve the second term
in Eq. (3), which appears in the machine learning problem. Thus, to modify
DMRG to fit this problem, we define a post-processing step after the Lanczos
algorithm. First, we compress As into A′

s
= V TV † with the unitary V and

tridiagonal and real T obtained from the Lanczos algorithm. With the fast diag-
onalization of T [10], we obtain the eigendecomposition of A′

s
=

∑

m

i=1
ei |λi〉 〈λi|.

The starting vector of the Lanczos iteration is chosen to be |bs〉 so that |bs〉 is
fully represented in the basis of the Lanczos vectors and thus the eigenbasis of
A′

s
.1 After compressing, our local effective loss function results in the gradient

x |Ψs〉
!
= |g〉 := A′

s
|Ψs〉 − |bs〉 . (5)

For the optimal normalized |Ψs〉 the gradient is not 0 but equal to x |Ψs〉, with
a real scaling factor x = ±

√

〈g|g〉. This ensures the constraint of the local
optimum to the unit sphere on which |Ψs〉 lives, i.e., the gradient is perpendicular
to the unit sphere. Eq. (5) can also be derived by Lagrangian optimization with
the normalization constraint on |Ψ〉. Assuming (A′

s
− x1) is invertible, |Ψs〉 is

given by
|Ψs〉 = (A′

s
− x1)−1 |bs〉 .

Given that |bs〉 is completely decomposable into the |λi〉, we obtain

|Ψs〉 = (
N
∑

i=1

1

ei − x
|λi〉〈λi|) |bs〉 .

We define bsi = 〈bs|λi〉 〈λi|bs〉, the overlap of the vector |bs〉 and the respective
eigenvector. With the normalization condition 〈Ψs|Ψs〉 = 1 we obtain

1 =

m
∑

i=1

bsi

(ei − x)2
. (6)

We recall that As and subsequently A′
s
are positive semidefinite. Thus, their

smallest eigenvalue is non-negative 0 ≤ emin. Eq. (6) suggests multiple solutions
xs, yet there is only one xs < emin because the right-hand side of Eq. (6) is
strictly monotone for x < emin, i.e. x1 < x2 ⇔ RHS(x1) < RHS(x2).

Using the compressed A′ in the loss function Eq. (3), we obtain the loss

L(x) =

m
∑

i=1

eibsi

(ei − x)2
− 2

bsi

(ei − x)

1Similar lines of reasoning can be found in randomized numerical linear algebra, see [12].



with 0 < ei, bsi. For L(x) we find L(−|x|) ≤ L(|x|). Thus, the global minimum
can only be obtained by selecting xs < 0. As established above, there can be
only one solution xs < 0, which thus is the global minimum. In the gradient
descent algorithm, we expect the gradient to converge on the same |Ψs〉. The
solution given by xs < 0 is obtained because the resulting gradient update is
positive and thus amplifies the direction |Ψs〉 over other directions. Thus, the
gradient descent algorithm converges on the global minimum.

Without an analytical solution to Eq. (6), we find this xs < 0 by using a
Newton iteration. Due to the asymptotical nature of Eq. (6), it only converges
if the iteration is initialized with xs < xinit < 0. We find xinit by checking
whether the right-hand side of Eq. (6) is larger than 1. As a side note, during
the Lanczos iteration, to avoid numerical instability, we substract ai |vk〉〈vk| and
ηi(|vk−1〉〈vk|+ |vk〉〈vk−1|) from A, with entries of the tridiagonal matrix ai and
ηi, and the Lanczos vectors |vk〉.

5 Experimental validation

Fig. 2: The loss is displayed over the iterative steps that are given by three
sweeps. The modified DMRG method, and the gradient descent with

normalization are compared with conjugate gradient descent.

To validate our approach and to compare to standard methods, we apply the
standard conjugate gradient descent and our two outlined algorithms to the same
subset of 5000 MNIST images that are rescaled to 7x7. 4000 images are used in
training and 1000 for testing because the matrix A scales with the squar of the
number of images. The three approaches were tested for three full two-site sweeps
with a maximum bond dimension of 20. Thus, we have (49 × 2 − 1) × 3 = 291
total local iteration steps, where each iterative step solves our local optimization
problem. Fig. 2 displays the loss over the number of local iteration steps during
the sweep. The results for loss and accuracy are given in Tab. 1. We observe
that introducing the normalization condition significantly impacts both loss and
accuracy. However, the norm of the MPS obtained with conjugate gradient
descent is 3.9 · 106. Normalizing this MPS, gives only vanishing overlaps in the
loss function Eq. (1), which results in a trivial loss of ≈ 0.5.



method training loss test loss training acc. testing acc.
initialization 0.43646 0.43984 67.725% 63.300%

conjugate grad. desc. 0.06487 0.08680 96.950% 94.700%
norm. grad. desc. 0.35820 0.36256 75.750% 73.000%
modified Lanczos 0.35820 0.36257 75.775% 73.100%

Table 1: Overview of accuracy and loss of the different methods.

6 Conclusion and Outlook

In this work, we take the step to adapt tensor network methods to approach
quantum machine learning more efficiently. Implementing the normalization
condition is necessary to make the algorithm fit for deployment on quantum
computers. However, the results of the validation show that the performance
needs to be increased to be competitive with other contemporary algorithms.
Clearly, further improvements are needed to achieve parity with classical tensor
network methods. To this end, more complex normalization conditions should
be studied, like those in quantum channels and improvements in the evaluation
of the methods need to be developed. Overall, major research still needs to be
done to bring machine learning efficiently to quantum computers.
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