
Investigating four deep learning approaches as
candidates for unified models in time series

forecasting and event prediction: application in
anesthesia training

Q. Victor1, I. Clavier1, H. Boisaubert1, F. Picarougne1,
C. Lejus-Bourdeau2 and C. Sinoquet1

1 - Nantes University, CNRS, LS2N, UMR 6004, Nantes, France
2 - LE SiMU / Nantes University Hospital, Nantes University, France

Abstract. This paper explores deep learning architectures for the pur-
poses of unsupervised representation learning of hybrid asynchronous data,
and joint prediction tasks. We aim to forecast short-term multivariate
time series contextualized by events and to predict events contextualized
by time series. Our proof-of-concept examines a real-world case of digitally
assisted training in anesthesia. We evaluate four different architectures,
using two strategies to integrate both time series and event sequences in the
models. We assess the prediction quality of the models, and demonstrate
that only one of the four architectures achieves performance outcomes
compatible with our application objective.

1 Introduction

Nowadays, systems and their environments increasingly generate event traces
in parallel with multivariate time series. As a result, new opportunities are
emerging to design frameworks for the joint modeling of event traces (ETs)
and associated multivariate time series (MTS), thereby enhancing the pace and
scope of research in this area. Despite this potential, research on joint ET-
MTS modeling remains limited, with existing approaches primarily focused on
specialized applications such as survival analysis and rare event prediction.

Our contribution to ET-MTS joint modeling, as discussed here, responds
to healthcare professionals’ demand for data-driven simulation training aimed
at future anesthesia practitioners. Since 2000, Nantes University Hospital has
been documenting anesthesia profiles for all surgical procedures performed. Each
profile includes a multivariate time series and an event trace. The MTS records
the evolution of physiological variables during the operation, while the ET tracks
the medical actions performed throughout the surgery.

Our application objective is to predict the short-term evolution of a digi-
tal patient’s physiological parameters in response to medical actions performed
during surgery. As the only human agent of the medical team, the simulator
user will perform these actions through the simulator’s interface (e.g., a laptop
keyboard). In contrast, we need to forecast the actions performed by the rest
of the medical team, which is virtual, taking into account the progression of the
surgery.



(a) (b)
Fig. 1: (a) Anesthetic profile. The event trace is shown in the upper part of the
subfigure. (b) Piecewise constant time series derived from a sparse event trace.

We have identified no existing models that tackle the joint prediction of time
series contextualized by events and events contextualized by time series. To
bridge this gap, we have specifically tailored four deep learning architectures
for the purposes of unsupervised representation learning of mixed asynchronous
data and joint forecasting tasks.

2 Joint modeling of mixed asynchronous streams

2.1 Input data

The anesthetic profile of a patient consists of a multivariate time series z and a
trace of events u (Figure 1 (a)). The MTS z = {z1, z2, . . . zt, . . . z`z

] of length `z
describes nv variables in parallel (zt ∈ Rnv ). The observations zt are sampled at
consistent intervals. We consider a mapping from the integer interval [1, `z] to
R+, to assign the continuous timestamp τt to each observation zt. In the event
trace u = {(u1, t1), · · · (u`u , t`u)}, each event ui belongs to a given set C of nc
event classes and is timestamped by ti ∈ R+. We note that the same event may
appear multiple times in u. These events are likely to impact the dynamics of z.

Synchronization and label encoding In any anesthetic profile (z,u), we
synchronize the sparse event trace u with z by adding an event category, ε,
which denotes the absence of an event. At most one event is assumed to occur
in the interval [τt, τt+1[. If an event exists, it is aligned with t; otherwise, ε is
aligned with t. This results in a univariate categorical time series v, defined
on C ∪ {ε}, with the same length as z. The next step is to randomly assign
an integer from [1, nc] to each label in C , assign 0 to ε, and map the events of
v to [0, nc], resulting in the integer-valued univariate time series vnum. In this
paper, we use two strategies for integrating the streams z and vnum into the four
architectures under consideration.

Piecewise constant time series Figure 1 (b) shows how the PWC modality
handles the sparsity issue by transforming vnum into a piecewise constant time
series, vpwc. Finally, the nv + 1 variables in z and vpwc are normalized to zero
mean and unit standard deviation before being input into any of the four models.



Learning-based embedding Neural networks have become the dominant
framework for learning embeddings of categorical data. This prominence arises
from their ability to map categorical data to points in a vector space, while safe-
guarding meaningful relationships between categories. In the EMB modality, we
first normalize the nv variables of z. The discretized data in vnum are passed
through an embedding layer integrated into each model. Given the specified
embedding dimension dembev , the embedding is learned simultaneously with the
rest of the model, which is trained for the joint prediction tasks. Next, we con-
catenate the resulting embedded data with the normalized data from z. These
data, with dimension dembev + nv, are then input into each of the four models.

2.2 Investigated models

In the class of RNNs, we refer to ST-LSTM as a stack of LSTM layers, in which
Long Short-Term Memory units recurrently update two latent states (ct and
ht) to capture long-term dependencies in sequential data [1]. Next we selected
the Multivariate Time-series Graph Neural Network (MTGNN) framework for
its ability to learn the graph structure directly from the data, enabling it to
capture the dependencies among variables in MTS [2]. Furthermore, MTGNN
interweaves temporal and spatial convolutional modules, making it well-suited
for modeling spatio-temporal relationships. Finally, we included the Vanilla
Transformer [3], and one of its variants. The Informer was specifically designed
to address the scalability issue in Transformers, for the time series forecasting
task [4].

2.3 Model training

Each of the four models will be trained using pairs {x, y}, where x and y are
sequences of dimension nv + 1 (modality PWC) or nv + dembev (modality EMB),
with lengths k and h. Parameter k specifies the length of past context from which
to perform h-ahead prediction during training by minimizing a loss function.
The trained model will be used for h-ahead prediction for any dynamic systems
described by (z, u) (see Section 2.1). A composite loss controls training by
combining mean squared error (MSE) and categorical cross-entropy (CCE): Φ =
mse +α cce, where α accounts for the scale difference between MSE and CCE.

3 Experiments

3.1 Anesthesia dataset, implementation details, metrics

Our dataset includes 1,000 anesthetic profiles of men approximately 30 years
old, with no prior medical history, who underwent laparoscopic inguinal hernia
surgery. This procedure involves up to 37 distinct medical acts. The four phys-
iological variables analyzed are detailed in Figure 1 (a). The dataset was split
into training (60%), validation (20%), and test (20%) subsets.

We used PyTorch 2.5.0 to customize the ST-LSTM and Transformer archi-
tectures. The MvTs library was employed to tailor the MTGNN and Informer



Table 1: Architecture-dependent hyperparameters considered in our work.

st-lstm
n`: number of stacked hidden layers,
nn: number of nodes (i.e, lstm units) common to the hidden layers;

defining the dimension of both hidden state vectors ht and ct.

mtgnn

n`: total number of hidden layers,
nc`: number of stacked convolutional layers,
ncc: number of channels in the model’s convolutional layers,
nrc: number of channels used in the residual connections of the model.

transformer n`: total number of hidden layers in either the encoder or the decoder,
and informer demb

t,i : embedding size used to represent the input data in a latent space.

models, as well as to manage data loading, training, validation, and testing [5]
(https://github.com/MTS-BenchMark/MvTS).

We evaluated MTS prediction using four standard metrics: MSE, MAE,
MAPE, and SMAPE. Event forecasting was assessed using global accuracy (GA),
along with arithmetic (FSA) and geometric (FSG) F-score means.

3.2 Experimental settings

Table 1 lists the model-dependent hyperparameters adjusted in our experiments.

Preliminary study A NOE (No Event) modality was included for comparison
with PWC and EMB modalities. To enable frugal exploration before intensive
grid search, we varied one hyperparameter at a time from a reference configu-
ration, keeping other parameters constant for each model and modality (see
Table 2).

Grid search The preliminary study indicated that the EMB modality per-
formed best. During the grid search, we varied the hyperparameters as shown in
Table 3, and set the same values of common hyperparameters as in Table 2. For
each of the nconf hyperparameter configurations of a model, we ranked each of

Table 2: Hyperparameter configurations for the preliminary study. For instance,
for st-lstm with noe modality, we started from (n`, nn) = (2,64) and derived
the configurations (2, 128), (2, 256), (1,64), and (3,64).

NOE, PWC and EMB EMB
ST-LSTM n` ∈ {1, 2, 3}; nn ∈ {64, 128, 256} demb

ev ∈ {5, 10, 15}; α ∈ {0.25, 0.50, 0.75}

MTGNN n` ∈ {2, 3, 4}; nc` ∈ {1, 2, 3}
demb

ev ∈ {5, 10, 15}; α ∈ {0.25, 0.50, 0.75}
ncc ∈ {16, 32, 64}; nrc ∈ {8, 16, 32}

Transformer n` ∈ {2, 4, 6, 8}; demb
ev ∈ {5, 10, 15, 20, 25};

Informer demb
t,i ∈ {64, 128, 256, 512, 1024} α ∈ {0.25, 0.50, 0.75}

Number of st-lstm: 5 models; mtgnn: 9 models; st-lstm: 9 models; mtgnn: 13 models;
models trained attention-based models: 8 models attention-based models: 14 models

Hyperparameters common to the four models considered
• k = 30 • h = 10 • Batch size: 32 • nepochs= 200 (controled by early stopping) • Dropout: enabled
• Gradient descent optimization algorithm: Adam • Network weight initialization: Glorot Uniform
• Learning rate = 10−4



Table 3: Range of hyperparameter variations for the grid search.
ST-LSTM • n` ∈ {2, 3, 4} • nn ∈ {128, 256, 512} • demb

ev ∈ {10, 15, 20} • α ∈ {0.2, 0.3, 0.4}

MTGNN • n` ∈ {2, 3, 4} • nc` ∈ {2, 3, 4}
• ncc ∈ {32, 64, 128} • nrc ∈ {8, 16, 32} • demb

ev ∈ {8, 10, 12} • α ∈ {0.25, 0.35, 0.45}
Transformer • n` ∈ {3, 4, 5} • demb

t,i ∈ {128, 256, 512} • demb
ev ∈ {18, 20, 22} • α ∈ {0.4, 0.5, 0.6}

Informer • n` ∈ {5, 6, 7} • demb
t,i ∈ {256, 512, 1024} • demb

ev ∈ {3, 5, 7} • α ∈ {0.6, 0.7, 0.8}
mtgnn: 729 models trained; each of the three other architectures: 81 models trained

the seven metrics within the range [1,nconf ]. Next, we computed the respective
average ranks obtained over the 4 and 3 metrics dedicated to continuous and
categorical variables. Each configuration was scored using ravg, the average of
these two quantities.

3.3 Results and analysis

Preliminary study Table 4 highlights the performances measured with the
MAPE metric and global accuracy. We outline four conclusions: (i) for all four
models, the PWC and EMB modalities respectively deteriorate and improve the
MTS forecasting performance with respect to the NOE modality; (ii) all models
but the Transformer exhibit failures or poor performance in event prediction,
even under the most favorable modality (EMB); (iii) in this modality, MTGNN
is the second best model after the Transformer; (iv) in this experimental set-
ting, no clear trend emerges, except for ST-LSTM, regarding the influence of
hyperparameters on MTS prediction or event prediction performances.

Model selection and comparative analysis The grid search confirms the
preliminary study’s conclusions, except that this time ST-LSTM and the In-
former exhibit similar poor event forecasting performances. Figures 2 (a) and 2
(b) compare the performance distributions across all prediction horizons while
Figure 2 (c) focuses on the four best models obtained through score ravg. The
Transformer shows the highest performances. The MTGNN’s spatial and tem-
poral convolution modules fail to deliver acceptable performance for our future
simulator. The Informer is unexpectedly the slowest to train of the four archi-
tectures (The averages are 24 hours, 2.9 days, 4.6 days and 6.1 days respectively
for the ST-LSTM, MTGNN, Transformer and Informer). Notably, we observe
that the reported ability of the Informer for long time series prediction does not
necessarily translate to strong performance in the short term.

Table 4: Predictive performances at horizon 10 from the preliminary study.
Modalities

NOE PWC EMB PWC EMB
mape Global accuracy

ST-LSTM 1.6-1.8 2.5-3.4 1.4-1.6 0.25-0.33 0.04-0.26
MTGNN 1.3-1.4 1.5-1.7 1.2-1.3 0.21-0.27 0.74-0.81

Transformer ≤0.2 0.4-2 0.01-0.1 0.01-0.99 0.96-0.99
Informer 1.5-1.6 1.8-3.7 1.9-2.0 0.16-0.29 0.66-0.83



(a) Time series prediction (mape) (b) Event prediction (fsa)

(c) Description of the top four models and their performances
Fig. 2: (a) and (b) Distributions of performances across horizons and architec-
tures. The boxplots are displayed in the order: st-lstm (red), mtgnn (green),
transformer (pink), informer (blue). (c) Top four models.

4 Conclusion and future work
In this work, we have tailored four deep learning architectures for unsupervised
representation learning of hybrid asynchronous data and joint forecasting tasks.
We demonstrate the applicability of the Transformer model for joint prediction,
with a specific focus on data-driven simulation of a patient under anesthesia.
Future work will address surgeries with an increased number of variables and
events. In personalized medicine, a Transformer-based solution will predict the
risk of a medical action on a real patient’s digital twin before surgery. Moreover,
beyond simulating the next medical action not performed by the user, event
prediction will help detect when the user deviates from the standard procedure.

References
[1] S. Hochreiter and J. Schmidhuber, Long Short-Term Memory, Neural Computing,

9(8):1735–1780 (1997).
[2] Z. Wu, S. Pan, G. Long, J. Jiang, X. Chang and C. Zhang, Connecting the dots: multi-

variate time series forecasting with graph neural networks. In proceedings of the 26th ACM
SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD),
pages 753–763, 2020.

[3] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones et al., Attention is all you
need. Proceedings of the Annual Conference on Neural Information Processing Systems
(NeurIPS), pages 5998–6008, 2017.

[4] H. Zhou, S. Zhang, J. Peng, S. Zhang, J. Li et al., Informer: beyond efficient Transformer
for long sequence time-series forecasting. In proceedings of the 35th AAAI Conference on
Artificial Intelligence (AAAI), pages 11106–11115, 2021.

[5] J. Ye, W. Li, Z. Zhang, T. Zhu, L. Sun and B. Du, MvTS-library: an open library for
deep multivariate time series forecasting, Knowledge-Based Systems, 283:111170, 2024.


	Introduction
	Joint modeling of mixed asynchronous streams
	Input data
	Investigated models
	Model training

	Experiments
	Anesthesia dataset, implementation details, metrics
	Experimental settings
	Results and analysis

	Conclusion and future work

