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Abstract. Advances in machine learning (ML) and deep learning
(DL) have led to automated sleep staging approaches that achieve high
accuracy but often require extensive computational resources and/or high-
density electroencephalograms (EEG). This paper presents a method for
sleep staging using features extracted via the Discrete Wavelet Transform
(DWT) and Power Spectral Density (PSD), followed by the Gradient
Boosting (GB) classifier. The study employs a private dataset and
the sleep-EDF dataset, comprising EEG and electrooculograms (EOG)
channels. The analysis includes configurations with varying numbers of
subjects (75, 20, and 12), and the results demonstrate that the proposed
method achieves competitive performance with existing approaches that
use complex DL architectures, even with fewer subjects. Feature
importance analysis highlights the importance of detail coefficients from
DWT and PSD-based features from EEG signals. The findings suggest
that simplified methods using low-density EEG and EOG with well-
selected features and GB classification can offer a viable alternative to
DL approaches for sleep staging.
1 Introduction

Sleep staging, which involves identifying wakefulness (W), rapid eye movement
(REM) sleep, and three non-REM (NREM) stages (N1, N2, N3), is essential
in sleep medicine. Sleep experts manually determine sleep stages based on
polysomnography (PSG), which includes signals from electroencephalograms
(EEG), electrooculograms (EOG) and electromyograms (EMG). Manual sleep
staging is time-consuming and costly, leading to the development of machine
and deep learning (ML, DL) models as potential solutions [1-4]. Our previous
research has used high-density EEG [3, 4], while other studies have focused on
datasets like Sleep-EDF, which include two EEG channels and one EOG channel
from over 75 subjects across two sessions [5].

The authors in [6] combined two bipolar EEG channels (Fpz-Cz and Pz-Oz)
and one horizontal EOG channel from the Sleep-EDF dataset with EEGNet-
BiLSTM, and reported an accuracy of 0.90 and a confusion matrix in which
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the most misclassified classes are N1, N2, and N3. Another recent approach,
called SalientSleepNet, was proposed [7] and tested in the SleepEDF-39 and
Sleep-EDF-153 datasets using Fpz-Cz EEG and horizontal EOG channels [5],
reporting an accuracy of 0.85 on average. Other works used Sleep-EDF-20 (Fpz-
Cz channel), Sleep-EDF-78 (Fpz-Cz channel) datasets [5]. In the best case, they
obtained an accuracy of 0.856 and 0.829, respectively, for each dataset using
an attention-based deep learning architecture (AttnSleep) [8]. A recent work
proposed the use of cascaded CNN + LSTM and the use of only one bipolar
channel from the Sleep-EDF dataset, showing that it is possible to obtain an
accuracy of 0.827 using only Fpz-Cz, and 0.797 using Pz-Oz [9]. In all the
mentioned works, there are many factors that confound the comparisons, since
different approaches are tested under different conditions, such as using a subset
of subjects, splitting into different percentages for testing, training and validation
(which are not mentioned in the reported papers), and using a different number
of folds in the cross-validation.

Although deep learning methods have shown high performance for sleep
staging [3, 7, 8], there is a need to use computationally inexpensive methods
that can obtain similar performance while using low-density EEG [10]. Here,
we present a method for the classification of 5-class sleep stages by extracting
features using the Discrete Wavelet Transform (DWT) and Power Spectral
Density (PSD) estimated via Welch’s method and then using those features
as input to Gradient Boosting (GB) algorithm. Our analysis comprises a
set of configurations that incorporate EEG and EOG channels to show the
performance obtained with configurations used in the state-of-the-art (using 75
or 20 subjects), as well as using 12 subjects in order to compare the performance
in the sleep-EDF dataset and a private dataset.

2 Materials and Methods

2.1 EEG dataset and preprocessing

For our study, we used a private dataset referred to as IIIS-data and a public
dataset referred to as sleep-EDF. Relevant information for our analysis is
explained below.

The sleep-EDF dataset contains data from 82 healthy subjects for most of
them collected during two sessions using 2 EEG channels (Fpz-Cz and Pz-Oz)
and 1 EOG channel (EOG-horizontal), which were sampled at 100 Hz. The sleep
stages were manually labeled every 30 seconds. To reduce class imbalance, we
cut each recording to retain only 30 minutes of wake time prior to the first sleep
stage and 30 minutes after the last sleep stage. We only considered subjects
with data from the two sessions, thus obtaining 75 subjects after excluding 8
subjects (Ids: 13,36,39,52,68,69,78,79 as of November 2024) [5].

IIIS-data was collected at the International Institute for Integrative Sleep
Medicine of the University of Tsukuba, Japan [3]. It consists of EEG recordings
of 12 subjects (4 females, 22.5+ 0.9 years), who slept for ~8 hours while their
data were collected using the BioSemi headcap, a sample rate of 1024 Hz
with 128 EEG channels, three EOG channels, three EMG channels, and two
mastoid channels. The sleep stages were manually labeled every 30 seconds



by a registered polysommnographic technologist. All channels are monopolar;
therefore, we applied a process to create bipolar channels using the MNE python
library [11]. Using Fpz and Cz channels to obtain Fpz-Cz, Pz and Oz to obtain
Pz-Oz, and EOG-1 and EOG-r to obtain the EOG-horizontal channel. We also
downsampled the data to 100 Hz; in this way, we have the same EEG channels
and sample rate in both datasets, making the performance comparison clearer
for our experiments.

Experimentally, we defined a bandpass filter from 0.4 to 30 Hz, which was
applied to both datasets. For all cases, we used the 30-second segments of the
EEG/EOG data for feature extraction.

2.2 Feature extraction, data augmentation and classification

Using DWT with 4 levels of decomposition and the mother wavelet biorthogonal
2.2, EEG and EOG signals were decomposed into approximation coefficients and
detail coefficients (cA4, ¢D4, ¢D3, ¢D2, ¢D1). For each subband of each channel,
we computed 10 features: Selvik fractal dimension, Katz fractal dimension,
Petrosian fractal dimension, Higuchi fractal dimension, instantaneous energy,
Teager energy, Hjorth mobility, Hjorth complexity, kurtosis and skewness.

PSD features were calculated to obtain five features per EEG and EOG
channel that correspond to delta (0.5-4), theta (4-8), alpha (8-12), sigma (11.5-
15.5), and beta (15.5-30).

To address class imbalance in both datasets, we applied data augmentation
techniques by tripling the original number of instances for the N1 and REM
sleep stages. This approach provided the highest performance; however, various
other configurations and sleep stages were also tested. The tested methods
for data augmentation were the Synthetic Minority Oversampling Technique
(SMOTE), Adaptive Synthetic Sampling (ADASYN), or adding Gaussian noise;
however, for comparative purposes and based on the performance obtained, we
used ADASYN for both datasets.

Features from EEG/EOG channels were input into various classifiers,
validated with a 10-fold cross-validation, ensuring no subject’s data appeared in
both training and test sets (i.e., 70% of subjects for training, 30% for testing).
Model performance was assessed with accuracy, Flscore, precision, recall, area
under the receiver operating characteristic (AUROC), and kappa. We report
only GB results, which achieved the highest performance. Feature importance,
calculated as the normalized sum of the criterion’s reduction (impurity-
based or Gini importance), identified the most relevant channels/features for
classification. The higher the value of feature importance, the more critical the
feature is for the classification task.

3 Results
3.1 Assessing the performance on sleep-EDF dataset using the 75
subjects

Here, we evaluated the performance using the features from one channel at
a time, combining features from one EEG with EOG features, and the two
EEG with the EOG channels. In this way, we showed the performance using
a high number of subjects with data from the two sessions of the sleep-EDF.
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Fig. 1: Performance using all subjects of sleep-EDF using different test set sizes.

Furthermore, we tested performance using different percentage distributions for
training and testing of GB models. Fig. 1 shows the results obtained for each
metric in the different configurations. The left side of each metric in the plot
shows the performance with features of Pz-Oz, Fpz-Cz, or both EEG channels.
The right side of each metric in the plot shows the performance using the features
of both EEG channels + EOG, Fpz-Cz + EOG, or Pz-Oz + EOG.

The results show that when using a single channel, the highest performance
is obtained using the Fpz-Cz, but lower than when using both EEG channels. It
also shows that by adding the EOG channel features to any of the EEG channels,
performance is best increased to 10% on many metrics. On average in 10-fold,
when training the models with data from 95% of the subjects, the performance
is similar to that when using data from 70% of the subjects.

3.2 Classification performance in both datasets under different
configurations

Based on the previous experiment, this and the following experiments, we
decided to use 90% of the data for training and 10% for testing, in all cases
we use the two EEG channels and the EOG channel. Here, we present a set of
experiments using both datasets with data from 75, 20 and 12 of the subjects
from sleep-EDF. In this way, we can compare the results from the state-of-
the-art which use 75 or 20 subjects, as well as compare the performance using
12 subjects in both datasets. Table 1 shows the performance obtained in the
different metrics and configurations. Other approaches that use the sleep-EDF
dataset perform their analysis with 78 subjects from the datasets; however, as we
mentioned before, some of the subjects do not have the two recording sessions,
which were excluded for our study.

Table 1 shows that when we use data from 75 or 20 subjects, the performance
is similar in accuracy and kappa, but around 4% lower for Flscore. This shows
that even when the models are trained with data from fewer subjects, the
performance in the test sets across the 10-fold cross-validation remains similar.

Surprisingly, using data from the first 12 subjects of the sleep-EDF, the
accuracy and kappa metrics are higher than even using the 75 subjects, but
the Flscore remained at 0.77, which may be related to class imbalance in the
subjects used, especially for N1 and REM. The point that we want to highlight
is that when using the ITIS-data, the performance is lower in most of the metrics,
especially for accuracy, Flscore, and kappa metrics.



Table 1: Classification performance with different number of subjects for sleep-

EDF, and 12 subjects of the IIIS-data.

Dataset Accuracy [Flscore [Precision [Recall AUROC [Kappa
Sleep-EDF', 75 subjects| o go740.02] 0.770£0.02] 0.763+0.02] 0.786+0.02] 0.95940.01] 0.760+0.03
Sleep-EDF’, 20 subjects| g9740.01] 0.728-+0.02]0.736£0.02[0.742+0.01]0.949+0.01] 0.750+0.02
Sleep-EDF, T2 subjects| 5 g44-+0.03] 0.774-0.04] 0.800£0.04] 0.776£0.05] 0.969+0.01] 0.782+0.04
ITIS-data, 12 subjects |4 79910.05]0.765:£0.04]0.77420.04]0.776+0.04] 0.955+£0.02[ 0.731+0.07

Features: DWT Fpz-Cz Features: DWT Pz-Oz Features: DWT EOG U‘_' 8
>0.127 S xl8lg
S z‘\?} “ wla |w
20.10- ¢ t iY alala
£ & [ & e, D 1, Teager energy [0 | & [ @
(= . © 5 / o) |6
00875 s & s, glg|s
b o g & cD 2, Teagerenergy | S |5 |5
n » %, & ) HEE
s 0.064 Qe 208, S 3 51515
o & / " ene, PN & H 2 ===
30.044 g, & I =3 P
@0.049¢4 4 Kurtosis B & _\06 — .
el N kS 5®. -
= " Ll & ~ e 4
50.02- & I ¥ B
] o o . 7

Jy RF 1 .|

= .00 o= freerinet®

1
A) 5 g
B8
I
Features: DWT Fpz-Cz Features: DWT Pz-Oz Features: DWT EOG o F] g
> H Al la
= ‘Q"c/, ofe ﬂ
S01s 2|8
£ cD 2, Patros|an fractal dimension fa/w A
= ey, wlE| g
c -T/o/? w|®|3
= 1 2l512
20.10 - 7 - = 21213
9 €D 2, Hjorth mobility, cD 3, Petrosian fractal dimension J cD 1, Petrosian fractal dimension|| ‘s 3|
£
o w A
8o.05/ 2| 3
i cD 1, Teager energy ‘GQX' &
= "Tmi
3
. 4l I
EOOD ehgeses™ hossttace’ sssscss o ssses|ssesiin®sst *s,, aslonns] ®2%hae® fat - oL T EA, 1)
B ml 1:. ml cl m‘ o xn‘ c‘ ml o u\l r:>I ml DI ml ul ml c‘ -A‘ c‘ m‘ o‘ u\l 1:. ml DI ml c)‘ ml o w c‘
) ~~~~~~ § 9 R R BBERALEBER/ESE AR AERAE LR G S
No. of feature

Fig. 2: Impurity-based feature importance for the results presented in Table 1
with 12 subjects in the sleep-EDF dataset (A)) and IIIS-data (B)).

Fig. 2 shows the impurity-based feature importance for the results obtained
with 12 subjects in the sleep-EDF and IIIS-data. It shows the importance of the
features on each of the EEG and EOG channels (see Section 2.2), as well as the
features based on DWT and PSD.

The Figs. highlight features exceeding a 0.02 threshold, as they are clearly
higher than the other features. For the EEG channels, in the case of Fig. 2 A), it
shows that the important features are from both the approximation coefficients
(low frequencies) and the detail coeflicients (high frequencies), illustrated as cA4,
¢D1, and ¢D2. In contrast, Fig. 2 B) indicates important features only from the
detail coefficients (illustrated as ¢D2 and ¢D3). For the case of the PSD-based
features obtained from EEG signals, the features are clearly higher for the sleep-
EDF dataset. On the other hand, for the EOG features obtained with DWT
there are similar features in both datasets, but only for the PSD features from
EOG are more important only for the IIIS-data (see Fig. 2 B)).

4 Conclusion

Our experiments evaluated the performance of a sleep stage classification method
using a combination of DWT and PSD features with the GB algorithm. The
proposed method achieves competitive performance with the state-of-the-art
approaches using the sleep-EDF, but slightly lower under the same settings for



the IIIS-data. The results show that the method is robust to the number of
subjects used, with a similar performance obtained using 75, 20, and 12 subjects
from the sleep-EDF dataset. The feature importance analysis reveals that the
most important features are from the detail coefficients of the DWT (cD3, cD2,
¢D1) and PSD-based features from the EEG signals, indicating the importance
of high-frequency components in sleep stage classification. Our findings suggest
that simplified methods using low-density EEG with well-selected features and
GB classification can provide a viable alternative to deep learning approaches,
potentially making sleep staging more accessible and efficient.
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