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Abstract. The notion of stability plays a crucial role in ensuring the safe
development of a model in a lifelong learning context. This paper inves-
tigates the fundamental aspects of stability in a class of continuous-time
recurrent neural networks which include both state and costate variables.
The latter are directly inherited from optimal control theory, and they
act as adjoint variables closely related to gradient terms. Stability is in-
vestigated both in terms of state and of costate dynamics, showing the
key conditions that must be satisfied to produce bounded dynamics in the
forward and learning stages.

1 Introduction

In the last few years, the machine learning community renewed the interest
in recurrent neural networks and related topics, focusing on novel instances of
state-space models and analyzing their connections with Transformers-like neu-
ral architectures [1]. This interest is paired to the one of learning from non-i.i.d.
data provided over time, such as in the case of agents interacting in a dynamic
environment [2]. This is at the core of continual/lifelong learning [3], time se-
ries processing [4], and streaming machine learning [5], even if with sometimes
different terminology, approaches, and metrics. From a bare machine learning
standpoint, while sequence processing is very common when learning offline from
datasets of nicely segmented sequences, it is less common when learning from
a single, possibly lifelong, sequence provided over time [6]. It becomes even
more challenging when learning is instantiated in an online manner, without
focusing on storing data to replicate offline-learning dynamics (Collectionless AI
[7]1). This paper focuses on continuous-time recurrent models [8, 9] that not
only develop an internal state to summarize the data observed so far, but also
learn online in a forward manner (i.e., without backpropagating gradients over
the temporal dimension) from a stream of data. Recent work has promoted
the idea of Neural ODEs/CDEs and related approaches [10, 11], still relying on
boundary-value problems, and introducing adjoint variables to model the learn-
ing process when going backward in time, which can be related to the costate
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variables in optimal control theory. Differently, the novel framework of Hamil-
tonian Learning [12] focuses on solutions that work forward-in-time, thus specif-
ically considering a continuous stream of data. Hamiltonian Learning is rooted
on a control-theory-based formulation of the learning problem, where costate
variables have their own forward dynamics. In this paper, the stability of state
and costate dynamics are studied, both inheriting and adapting results from ex-
isting literature which might be known to a smaller audience, and specifically
analyzing the stability of the temporal evolution of the costate variables.

2 State Space Dynamics

We consider a neural network whose topology is defined by means of the directed
graphG = (V,A), being V and A the set of vertices (neurons) and edges (weighed
connections), respectively. The input processed by a neural network with n
neurons consists of the information coming from the environment in which the
model “lives”, and it is mathematically represented by a trajectory u : [0,+∞) →
Rd. We indicate with xi(t) the output of the i-th neuron at time t, and we assume
that the first d neurons of the topology are the input ones, thus xi(t) = ui(t)
for i = 1, . . . d and ∀t ∈ [0, T ]. Furthermore we will indicate with x without
subscripts the n− d dimensional vector (xd+1, . . . , xn), also referred to as state.
The notation pa(i) is used to indicate the set of parents of the i-th neuron.
Finally, without any lack of generality, we assume the output of the network to
consist of the last m values of x, i.e., xn−m+1, xn−m+2, . . . xn.

Let us consider a dynamical system defined for almost every t ∈ [0, T ],

γẋi(t) = −εxi(t) + σ
( ∑
j∈pa(i)

wij(t)xj(t)
)

for i = d+ 1, . . . , n, (1)

where γ > 0 is a time constant of the dynamics of the neurons, ε > 0 is a
regularization parameter (discussed in the following), and wij are real valued
weights of the model, (j, i) ∈ A 7→ wij . The function σ ∈ C1(R, S) with S ⊂ R, is
an activation function, that we will often assume to be bounded; for definiteness

S ⊂ [−1, 1], (2)

and monotonically nondecreasing (σ′ ≥ 0). Notice that in Eq. (1) we put our-
selves in the general setting where dynamics are driven by weights that have an
explicit temporal dependence. This is an important feature, as we will mention
in the next section, as soon as we regard the learning process of the network as
part of the dynamic of the system. Eq. (1) is also paired with initial conditions

xi(0) = x0
i ∈ R for i = d+ 1, . . . , n. (3)

Let ai =
∑

j∈pa(i) wij(t)xj(t) be a shorthand for the activations without explic-
itly indicating their dependence on x or w or time. Once the trajectories of the
weights are fixed and the initial conditions are given, we can give the following.



Definition 1. We denote with xε(·;x0) any solution of Eq. (1) that satisfies
also the initial condition (3), with xεi(t) = ui(t) for i = 1, . . . , d and ∀t ∈ [0, T ].

Regularization parameter ε. The first stability aspect of the “forward”2

dynamic that we analyze is related to the role of ε, which also motivates why we
refer to it as regularization parameter. The key result that clarifies its importance
can be summed up in the following proposition.

Proposition 1 (A priori estimate on x). Suppose σ satisfies (2), then3

∥xε(t;x
0)∥2 ≤ ∥x0∥2 +

√
n

ε
∀t ≥ 0.

Proof. Let us study how ∥x∥2/2 change over time. Assuming that x solves (1):

d

dt

1

2

n∑
i=1

x2
i =

n∑
i=1

xiẋi =
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Using hypothesis (2) on the activation function we therefore have (∥x∥22/2)′ ≤
−(ε∥x∥22 − ∥x∥1)/γ. Now we want to study the sign of the function f(x) :=
ε∥x∥22 − ∥x∥1 since we have just shown that ∥x∥2 decreases when f ≥ 0. Notice
that it is sufficient to study the behaviour of such function for xi > 0, i =
1, . . . , n since f is invariant under any transformation that maps (x1, . . . , xn) 7→
(s1x1, . . . , snxn) with any choice of si ∈ {+1,−1} for i = 1, . . . , n. We begin to
look for the values of x with positive coordinates such that f(x) = 0. From the

definition of f we have 0 =
∑n

i=1 x
2
i −

∑n
i=1 xi/ε =

∑n
i=1

(
xi−1/(2ε)

)2−n/(4ε2).
This is precisely the equation of a sphere with center (1/2ε, 1/2ε, . . . , 1/2ε) and
radius

√
n/2ε. Moreover, if we switch to hypershperical coordinates, and we

restrict ourselves in the region xi > 0, i = 1, . . . , n, the function f along the
radial variable assumes the form εr2 − Dr (where D > 0 depends only on the
values of the various angular variables). This means that for r ∈ (0, D/ε) the
function is negative, then for r ≥ D/ε it becomes positive. In any other sectors
where at least one coordinate is negative, say the j-th one, xj < 0,4 the same
reasoning applies. In this case, the sphere on which the zeros of the function
lie has its center at (s1/2ε, s2/2ε, . . . , sn/2ε) with sj = −1 and same radius√
n/2ε. However, since all these spheres are contained in the bigger sphere with

2Throughout the paper we will sometimes refer to the dynamics of the neuron states x
described by Eq. (1) as forward dynamics to distinguish it from the additional equations, that
we will present in Section 3, that instead describes how the weights changes over time. Clas-
sically this other set of equations, because of the language related to the backprop algorithm
are called backward dynamic/step.

3Here we use the notation ∥ · ∥2 to stand for the Euclidean norm in Rn, instead we will
indicate with ∥ · ∥1 the 1-norm in Rn.

4Technically these sectors are called orthant, and they are the n-dimensional generalization
of quadrants in 2 dimensions.



center 0 and double the radius, we can eventually say that f(x) ≥ 0 whenever
∥x∥2 ≥

√
n/ε. This means that if ∥x0∥2 <

√
n/ε, then the norm of the solution

can grow up until it reaches the value
√
n/ε but it cannot go above. On the other

hand if ∥x0∥2 >
√
n/ε then it will decrease from the beginning until it reaches√

n/ε. As a result, for sure ∥xε(t;x
0)∥2 ≤ ∥x0∥2 +

√
n/ε for all t > 0.

Notice that this proof relies in a crucial way to the presence of the regular-
ization parameter ε and as ε → 0 the result expressed by Prop. 1 is empty.

Antisymmetric weight matrix. While the regularization term ε enforces the
stability of the forward dynamics, it also favors exponentially suppressing modes,
a fact that can be problematic in tasks where memory is important. Therefore
another effective approach to ensure the stability of Eq. (1) is to enforce specific
spectral properties of the weight matrix W , that is the matrix collecting all the
wij ’s. Specifically it has been shown that [13] a simple policy to ensure a stable
forward propagation is to constraint the weight matrix to be antisymmetric.

3 Hamiltonian Learning

We can now study the stability of the overall learning process, using a unified
dynamical framework where also the “backward” phase can be described in terms
of an ODE system for a set of adjoint variables. In particular we focus on the
learning scheme that has been recently proposed in [12], based on results of [14],
where a class of learning problems over time is formulated using optimal control.
Following this approach, the way in which the weights of the model change due
to interaction with the environment are described through the dynamics of so
called costate variables p and q. A “sign flip” strategy allows the model to learn
by only going forward in time [12]. The costate p has the same the dimension
of the state variable x in Eq. (1) and can be thought as a surrogate of the δ-
error in backprop [14, Corollary 1]. The costate q is associated directly with the
temporal variations of the weights, so for each weight wij there is a costate qij .

In the present work we study the stability of the free dynamics of the overall
system, i.e., the behavior when no input or supervision is provided,5 with a
weight decay term with strength α > 0. For convenience in the notation, we
rewrite the main equations using a generic weight matrix W , instead of the
graph-based formalism we followed in Section 2. In particular, we indicate with
Q the costate matrix associated to W , where Qij = qij and Wij = wij . With
these assumptions, the set of equations that defines the Hamiltonian Learning
apporoach (cfr. [12, Eq. E ⋆ 1–E ⋆ 4] and [14, Eq. (18)]) are:

γẋi = −εxi + σ
(∑n

j=1 Wijxj

)
Ẇij = −Qij

ṗi = −(θ + ε/γ)pi + (1/γ)
∑n

k=1(W
′)ikσ

′
(∑n

j=1 Wkjxj

)
pk

Q̇ij = −θQij + (1/γ)σ′
(∑n

m=1 Wimxm

)
pixj + αWij

(4)

5We broadly mean any kind of signal to which we compare the output of the model.
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Fig. 1: Evolution of the norm of state x and costate p for n = 10, ε = γ = α =
θ = 1 for three different random initialization of Eq. (4).

where θ > 0 is a dissipation term.

Conjecture 1. The system in Eq. (4) is stable.

Notice that a proof of this conjecture in the case where the weight matrix
W is antisymmetric is easily conceivable: as we already remarked in Section 2,
antisymmetry alone guarantees [13] stability of x, since the Jacobian associated
to the right hand side of the dynamical system is proportional (through a positive
constant) to the weight matrix W itself. Looking at Eq. (4) we then realize
that the same thing applies also the equation of the costate p. In fact, in this
case, the Jacobian will be proportional to W ′ that, if W is antisymmetric, is
an antisymmetric matrix itself. Moreover, regardless of the structure of W we
experimentally evaluated that when ε > 0, the system in Eq. (4) appears to be
stable, as shown in Fig. 1.

Local stability of a single neuron. We formally explore the stability in the
case of a single neural unit. Let us set ε = γ = 1, then for n = 1 the system in
Eq. (4) is in the normal form u̇ = F (u) with

F (u) =


−u1 + σ(u1u2)

−u4

−(θ + 1)u3 + σ′(u1u2)u3u2

−θu4 + σ′(u1u2)u3u1 + u2

 .

Hence a fixed point of the dynamics, i.e., a solution of F (u) = 0, is u = 0.
Moreover the Jacobian matrix (∂F/∂u)(u) is

−1+σ′(u1u2)u2 σ′(u1u2)u1 0 0
0 0 0 −1

σ′′(u1u2)u
2
2u3 [σ′′(u1u2)u1u2+σ

′(u1u2)]u3 −(θ+1)+σ′(u1u2)u2 0
[σ′′(u1u2)u1u2+σ

′(u1u2)]u3 1+σ′′(u1u2)u
2
1u3 σ′(u1u2)u1 −θ

 .

The Jacobian evaluated at u = 0, i.e. (∂F/∂u)(0), has the following eigenvalues:
λ1 = −1, λ2 = −1 − θ, λ3 = (−θ −

√
θ2 − 4)/2, λ4 = (−θ +

√
θ2 − 4)/2 which

are all real and negative giving an asymptotically locally stable behaviour [15].

4 Conclusions and Future Work

The stability of the state and costate dynamics were analyzed for a class of
continuous-time recurrent neural model, learning over time in a possibly lifelong



manner. Existing results were re-framed in the context of Hamiltonian Learning
[12], highlighting the importance of the type of neuron model and of the structure
of the weight matrices to yield stable dynamics both in the computation of
state and costate. These results promote further investigations in the field of
learning over time, especially in a collectionless framework [7], which represents
the research direction of our future work.
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