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Abstract. Deep Learning (DL) offers promising tools for improving diag-
nostic processes in healthcare. Automated brain tumor segmentation us-
ing multi-parametric multimodal Magnetic Resonance Imaging (mpMRI)
plays a vital role in the clinical management of brain tumor patients, en-
abling precise delineation of tumor regions. In this paper, we present
O-Net, a deep learning model inspired by the U-Net architecture. O-
Net employs an ensemble of two mirrored U-Nets with alternating pooling
strategies –Max and Average Pooling– to enhance feature extraction. Our
approach demonstrates the potential to improve segmentation accuracy
using the BraTS 2021 training dataset and highlights the advantages of
combining complementary pooling strategies for this task.

1 Introduction

In brain tumor segmentation, the ultimate goal is to save lives through early
diagnosis and precise treatment. Manual segmentation is time-consuming, tak-
ing 45–60 minutes per case [1], while automated methods greatly reduce this
time and provide consistent, reliable results. DL techniques have made remark-
able strides in computer vision tasks [2], including brain tumor segmentation,
with models like U-Net. The RSNA-ASNR-MICCAI BraTS challenges, ongoing
since 2012, aim to advance segmentation methods for gliomas and other criti-
cal brain tumors. The BraTS 2021 challenge utilizes mpMRI scans to evaluate
cutting-edge methods for two primary tasks, with task 1 focuses on segmenting
glioblastoma sub-regions, including Whole Tumor (WT), Tumor Core (TC), and
Enhancing Tumor (ET). U-Net has become a cornerstone of medical image anal-
ysis due to its encoder-decoder structure and skip connections, which effectively
capture spatial context [3]. Researchers have extended U-Net by integrating
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different techniques. Also, the choice of pooling layers is critical for reducing
spatial dimensions and enhancing feature extraction. Alternating between Max
and Average Pooling is a relatively unexplored yet promising strategy. Our pro-
posed O-Net model builds upon U-Net by introducing alternating pooling layers,
capturing both dominant features and broader contextual information. O-Net
aims to refine tumor segmentation, ultimately contributing to more accurate
treatment planning and improved patient outcomes using BraTS 2021 dataset.

2 Related Work

Several surveys have been conducted in the field of DL to tackle the problem of
image segmentation [4, 5], and numerous networks based on U-Net have been
proposed, including U-Net++ [6], Reciprocal Adversarial Learning [7], Hybrid
Attention-Based Residual U-Net (HA-Runet) [8], improved Residual Network
(ResNet) [9], and 3D Cascade Dynamic Attention U-Net (ICU-Net) [10], all of
which demonstrate advancements in feature extraction and segmentation per-
formance. Recently, researchers have focused on integrating transformers with
U-Net, resulting in architectures such as (HRSTNet) [11] and Swin-UNETR [12].
On the other hand, pooling layers play a pivotal role in downsampling within
Convolutional Neural Networks (CNNs) [13], as they reduce spatial dimensions,
facilitate efficient feature extraction, and improve computational efficiency [14].
Max Pooling, as explained by [15], extracts the maximum value (the most promi-
nent feature), whereas Average Pooling computes the mean (providing a more
generalized view). Combining these methods takes advantage of the strengths of
both techniques, balancing detail preservation with contextual information [16].

3 Method

Given the historical success of U-Net (encoder-decoder structure) in medical
imaging, which is based solely on Max Pooling, and recognizing that Max and
Average Pooling, each offering distinct advantages [17], and since neither of them
outperforms the other, there is a possible advantage to perform different types
of pooling operations [18]. This approach may prevent information loss and
preserve pixel adjacency relationship effectively. Our method combines U-Net’s
strengths with the advantages of alternating pooling methods to optimize se-
mantic representation and enable the network to learn more diverse and richer
feature representations. Our proposed architecture is called O-Net, a simple
and enhanced U-Net model based on [3]. It represents a reflection of two U-Nets
as shown in figure 1, making an ensemble where each U-Net alternates the use
of Max and Average Pooling in parallel by extracting different features at the
same level/depth of the network (vertically), leading to a possible preservation
of spatial information. Finally, the feature maps from both reflected U-Nets are
concatenated at the end.
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Fig. 1: O-Net architecture

Dataset: The BraTS 2021 training dataset [19], is used in this paper, which
includes 3D MRI NIfTI images (T1, T1ce, T2, Flair and segmentation mask) for
1251 patients, each with 155 grayscale 2D slices at a resolution of 240x240 pixels.
Limited processing resources led us to downsize and crop each image, using 100
middle 2D slices to remove irrelevant areas and focus on the axial plane. The
images were normalized to 0–1. To evaluate model performance, we trained it
separately, on each of the four MRI modalities, as each provides unique and
complementary information about the tumor and surrounding tissues. We also
trained it on various combinations of modalities (T1ce-T2, T1ce-Flair, T1ce-
Flair-T2, Flair-T1ce-T2, T1-T1ce-T2-Flair, and T1ce-Flair-T2-T1), reflecting
clinical practice where multiple modalities are used for diagnosis and treatment.
Metrics used: Our model is compiled with the categorical crossentropy loss
function, suitable for multi-class classification problems like brain tumor sub-
regions classification and evaluated using the standard accuracy metric, the Dice
Similarity Coefficient (DSC), and the Mean Intersection Over Union (IOU).
Configurations: Our model was trained, validated, and tested with a batch
size of 1 using the Adam optimizer (Lr: 0.001). It has 49, 889, 604 trainable



parameters and was trained for 1,000 epochs on 64 × 64 pixel images. The
dataset included 850 training, 251 validation, and 150 testing images, with early
stopping applied (patience: 5).

4 Results and discussion

The results demonstrate that the best values across metrics are achieved by
different modalities and their combinations, highlighting the specific strengths
of each model (U-Net and O-Net). The results show that the order of combi-
nation, specially for (T1ce,Flair and T2) affected the result obtained. While
O-Net leads in (T1ce-Flair-T2), U-Net leads in (Flair-T1ce-T2). O-Net outper-
forms U-Net in T1, while they compete in the T1ce and T2 and Flair. U-Net
outperform O-Net in (T1ce-Flair). The high and highest (bold and underlined)
DSC scores obtained are represented in table 1, showing an overall DSC (0.7363)
belonging to O-Net (T1ce-Flair-T2-T1), underscoring its precision in segmenting
different tumor regions. For individual sub-regions, U-Net (T1ce-Flair) combi-
nation achieves the highest DSC for necrotic tissue (0.7104) and TC (0.8677).
In contrast, O-Net in (T1ce-Flair-T2-T1) excels in capturing ED (0.7808), ET
(0.8024), and WT (0.9001), demonstrating its robustness in segmenting larger
tumor structures. These results reveal that O-Net configurations generally out-
perform in overall tumor segmentation, particularly (T1ce-Flair-T2-T1), while
U-Net performs effectively in targeted regions, with (T1ce-Flair) leading for
necrotic and TC. O-Net with the (T1ce-Flair-T2-T1) combination, offers sev-

Model DSC NEC ED TC ET WT

U-Net(T1ce-Flair) 0.7347 0.7104 0.7696 0.8677 0.7977 0.8932

O-Net (T1ce-Flair-T2-T1) 0.7363 0.6934 0.7808 0.8620 0.8024 0.9001

Table 1: Best DSC result for U-Net and O-Net

eral advances over existing architectures with a TC DSC of 86.2%, compara-
ble to HRSTNet [11] (86.9%) and Swin-UNETR [12] (87.6%). It outperforms
other models like Reciprocal Adversarial Learning [7] (85.3%) and 3D Cascade
Dynamic Attention U-Net [10] (82.8%), U-Net++ [6] (78.17%), HA-Runet [8]
(81.3%). In WT segmentation, O-Net achieves 90.010%, which is competitive
with models like Reciprocal Adversarial Learning [7] (90.46%) and surpasses
others like HA-Runet [8] (86.7%), Improved ResNet [9] (86.4%) and U-Net++
[6] (87.12%). O-Net achieves a DSC of (80.24%) for ET, outperforming models
like U-Net++ [6] (71.92%), HA-Runet [8] (78.7%) and [10] (78.6%) although it
falls short of models like Improved ResNet [9] (94.5%). Transformer-based archi-
tectures are often complex, whereas O-Net utilizes the simpler U-Net structure
to enhance feature extraction and preserve spatial information. Although O-Net
may not consistently outperform transformer-based models across all metrics,
its balanced and robust performance in WT and TC regions highlights its value
in medical image segmentation. Further investigation of alternating pooling
strategies in transformer U-Net based architectures could offer valuable insights.



5 Conclusion

In this work, we presented O-Net, a simple architecture based on U-Net encode-
decoder structure with an alternating pooling mechanism. This represents a
meaningful extension to the field of U-Net-based models, which typically rely
on either Max or Average Pooling independently. This promising area should
be further explored by researchers as it offers a valuable avenue for advancing
medical image segmentation. Future work should investigate the use of original
input dimensions, additional modality combinations, and alternative parameter
configurations. Eventually, conducting experiments with other types of pooling
methods proposed in the literature is certainly our next step.
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