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Abstract. Local methods of dimensionality reduction like neighbor-
hood embedding (NE) and t-SNE in particular outperform older global
approaches such as stress-based multi-dimensional scaling (MDS). Stochas-
tic neighborhoods are less sensitive than distances to statistical varia-
tions between spaces with strongly different dimensionalities, making a
match across them very difficult. Here, we take inspiration from those
stochastic neighborhoods in order to devise a pseudo-distance that is less
prone to concentration than the Euclidean distance. For two points in the
high-dimensional data space, it is defined as the symmetrized Kullback-
Leibler divergence across the (stochastic) neighborhoods of the two points
(SKLAN). Plugging the SKLAN in a method of stress-based MDS, we com-
pare quantitatively t-SNE, MDS with all Euclidean distances, and MDS
with SKLAN & Euclidean distances on several data sets. The results show
that SKLAN allows MDS to perform competitively with t-SNE.

1 Dimensionality reduction and motivation

Dimensionality reduction (DR) aims at representing high-dimensional (HD) data
with low-dimensional (LD) embeddings, in which salient features of data are
preserved or even highlighted. Such features can be for instance variance in
principal component analysis (PCA) [1], distances in multidimensional scaling
(MDS) [2], or similarities in neighbor embedding (NE) [3]. Most of the current,
state-of-the-art methods of DR stem from the family of neighbor embedding,
with stochastic neighbor embedding (SNE) [4] as their common but forgotten
ancestor. The celebrity in the family remains undoubtedly t-SNE [5], proba-
bly because of its capability to amplify cluster gaps in the embeddings, on top
of overall good performance at DR. Neighbor embedding in general and t-SNE
in particular have dusted previous paradigms of DR, and notably so for MDS.
Stress-based MDS consists in finding embedding coordinates such that LD dis-
tances match those in HD [2]. In contrast, NE determines the embedding by
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matching normalized similarities, also known as (entropic) affinities [6], which
can be interpreted as probabilities of points to be neighbors of one another. The
key difference appears to be that such similarities are less sensitive to broad di-
mensionality gaps between the data and embedding spaces, while distances are
known to concentrate more or less in HD or LD, respectively.

This paper investigates whether MDS can be revived to some extent by re-
placing the Euclidean distance in the HD space with a (pseudo-)distance that
is more robust to norm concentration [7]. For two points i and j in the data
set, the proposed distance involves entropic affinities just like in NE, for a given
perplexity, to reflect probabilities of being neighbors, also known as ‘stochas-
tic neighborhoods’ [4]. Then, the pseudo-distance is computed as the sym-
metrized Kullback-Leibler divergence between the distributions of those proba-
bilities around i and j, over all points k, excluding i and j themselves. In spite
of not fulfilling the triangle inequality, this distance measured in HD space can
be matched to Euclidean distances in a LD embedding with stress-based MDS.
Results on a few typical benchmark data sets show that MDS with the proposed
metric can compete with NE and t-SNE, except for cluster gap magnification.

The rest of this paper is organized as follows. Section 2 is a short reminder of
NE and t-SNE. Section 3 details the proposed pseudo-distance and integrates it
in stress-based MDS . Experimental results are reported and discussed in Section
4. Section 5 concludes and sketches perspectives.

2 Neighbor embedding and t-SNE

Most methods of NE involve stochastic neighborhoods, one around each data
point, which are discrete probabilities of point j to be a neighbor of point i.
In SNE, these soft neighborhoods are softmax ratios, i.e., Gaussian functions
that are normalized into discrete neighborhood probabilities in both the data
and embedding spaces (HD & LD), whose mismatch is measured with Kullback-
Leibler divergences. In t-SNE, the HD Gaussian affinities are symmetrized, while
the LD affinities are Student t hyperbolic functions that are normalized jointly. If
X = [xi]1≤i≤N and Y = [yi]1≤i≤N denote the HD data and their LD embedding,
then the pairwise Euclidean distances be shortened as dxij = ∥xi − xj∥2 and
dyij = ∥yi − yj∥2 in HD and LD, respectively. Next, the HD entropic and
symmetric affinities are

pj|i =
exp(−dx2

ij/2σ
2
i )∑
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ik/2σ

2
i )
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where bandwidth σi is such that entropyHi = logK⋆ = −
∑

1≤j≤N,j ̸=i pj|i log pj|i
is the same around all xi and set by perplexity K⋆. In the LD embedding space,
the symmetrized entropic affinities are
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Then, t-SNE tries to match pij with qij by minimizing the joint KL divergence
KL(P ||Q) =

∑
1≤i,j≤N,i̸=j pij log(pij/qij) with respect to Y. Minimization is

carried out with gradient descent and (Nesterov) momentum.

3 Symmetric KL divergences across neighborhoods

A pitfall of stress-based MDS is that most stress functions proceed with direct
comparison of HD and LD distances between two points i and j, as in S(X;Y) =∑

1≤i<j≤N wij(dxij −dyij)
2, where wij are weights, typically giving the shorter

distances more priority. However, the statistical distributions of distances differ
significantly in shape and properties, depending on the space dimensionality. As
part of the curse of dimensionality, most norms concentrate as the dimensionality
grows: the ratio expectation over standard deviation increases [7]. Therefore,
dxij and dyij can have inherently different and thus irreconcilable distributions
if the dimensionality gap is too broad. Part of the success of NE and t-SNE stems
from replacing distances with affinities or similarities, not affected as strongly as
distances by space dimensionality. Inspired by NE, we propose a pseudo-distance
that address this issue of excessive sensitivity to dimensionality. Intuitively,
for two point xi and xj , it measures how the stochastic neighborhoods around
those differ. The symmetric Kullback-Leibler divergence across neighborhoods
(SKLAN) is defined as
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1
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2
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with, by construction, ðxij = ðxji and ðxii = 0. In contrast to positivity
and symmetry, triangle inequality is not verified and therefore ðxij is merely a
pseudo-distance. The successive approximations (4) and (5) result from the usual
though arbitrary convention of setting pi|i = 0 = pj|j , with an infinite logarithm,
contradicting the alternative intuition that log pi|i ∝ dxii = 0. Following this
intuition would lead to null terms for k = i and k = j when summing over k.
Therefore, those two problematic terms (for k ̸= i, k ̸= j) get excluded and
preliminary experiments, not reported here, confirmed better results without
them.

Next, the SKLAN can easily be plugged in any stress-based MDS, replacing
the Euclidean distance in the HD data space. It can fit in Sammon mapping [8]:
S(X;Y) =

∑
1≤i<j≤N (ðxij − dyij)

2/ðxij , where the weight 1/ðxij is expected
to work better than the original 1/dxij , which concentrates and therefore strug-
gles to discriminate local and global structure. The SKLAN can also fit in curvi-
linear component analysis (CCA) [9]: S(X;Y) =

∑
1≤i<j≤N (ðxij−dyij)

2H(λ−
dyij), where λ is a neighborhood radius and H is Heaviside’s step function. The



implementation that is used here rely on pointwise λi, such that these individu-
alized radii encompass K neighbors around each point, from K = N to K ≈ 2,
with a decrement schedule along iterations. CCA is expected to outperfom Sam-
mon mapping, as it can give up on some attractive force, just like t-SNE.

4 Experiments, results, and discussion

In order to assess the proposed pseudo-distance in MDS, several data sets are
embedded in 2D. Sammon mapping and CCA with Euclidean distances and
SKLAN are compared to t-SNE. The perplexity K⋆ of stochastic neighborhoods
is kept the same in both SKLAN and t-SNE; other metaparameters are left to
default values. In addition to embeddings, the curves RNX(K) = ((N−1

KN

∑
i |νKi ∩

nK
i |)−K)/(N − 1 +K) [10] are reported, where 1 ≤ K ≤ N is a neighborhood

size and νKi and nK
i are the K-ary (binary, non-stochastic) neighborhoods of xi

and yi, respectively. These curves allow inspecting both the local and global
structures. The minimum value is 0 (not better than a random embedding on
average) and the maximum is 1 (perfect rendering of all K-ary neighborhoods
from HD to 2D). The area under the curves (AUCs) compounds local and global.

The experiments embed in 2D eight popular datasets from the UCI reposi-
tory. Figure 1 shows the results for COIL-20 (N = 1440, K⋆ = 32), COIL-100
(N = 7200, K⋆ = 64), a tenth of MNIST (N = 6000, K⋆ = 32), and Brendan
Frey’s faces (N = 1965, K⋆ = 32). Each data set is embedded with Euclidean
Sammon mapping and CCA, t-SNE, as well as SKLAN Sammon and SKLAN
CCA. Figure 2 shows the result for Phoneme (N = 4501, K⋆ = 64), Google
(N = 5456, K⋆ = 64), Abalone (N = 4177, K⋆ = 64) and a third of MouseRNA
(N = 7941, K⋆ = 32). Visual inspection and quantitative checks reveal that
MDS with SKLAN becomes competitive again with state-of-the-art methods
of NE like t-SNE. Small neighborhoods are best preserved with SKLAN CCA,
which also achieves best AUC for 5 data sets out of 8. At this stage of the
proof of concept, MDS with SKLAN has cubic complexity for initial distance
computation (N2 distances over N − 2 neighbors), followed by quadratic MDS
iterations, which are simpler than those of non-accelerated t-SNE.

5 Conclusions and perspectives

The results confirm indirectly that stress-based MDS, as it is usually applied,
namely, by trying to match Euclidean distances between the data and embedding
spaces, gets affected by the difference in distance concentration between these
two spaces, reflecting their dimensionality gap. However, in the same spirit as
t-SNE, this issue is overcome by treating the two spaces differently. Here, the
distance in the embedding space is kept Euclidean for mathematical convenience
while the distance in the data space is the SKLAN, the symmetric KL divergence
across neighborhoods. Those stochastic neighborhoods, originally devised for
SNE [4], show little sensitivity to distance concentration and measuring their
symmetrized divergence brings a pseudo-distance that can be plugged in MDS.



Eucl. Sammon Eucl. CCA t-SNE

SKLAN Sammon SKLAN CCA

100 102
K

0

10

20

30

40

50

60

70

80

10
0R

N
X
(K

)

QA of embeddings

61:0 t-SNE

42:6 Eucl. Sammon

55:1 Eucl. CCA

40:3 SKLAN Sammon

63:3 SKLAN CCA

Eucl. Sammon Eucl. CCA t-SNE

SKLAN Sammon SKLAN CCA

100 102
K

0

10

20

30

40

50

60

70

80

10
0R

N
X
(K

)

QA of embeddings

52:9 t-SNE

37:0 Eucl. Sammon

33:9 Eucl. CCA

42:4 SKLAN Sammon

56:3 SKLAN CCA

Eucl. Sammon Eucl. CCA t-SNE

SKLAN Sammon SKLAN CCA

100 102
K

0

10

20

30

40

50

10
0R

N
X
(K

)

QA of embeddings

38:1 t-SNE

17:8 Eucl. Sammon

28:4 Eucl. CCA

15:4 SKLAN Sammon

37:6 SKLAN CCA

Eucl. Sammon Eucl. CCA t-SNE

SKLAN Sammon SKLAN CCA

100 102
K

0

10

20

30

40

50

60

70

10
0R

N
X
(K

)

QA of embeddings

53:0 t-SNE

34:4 Eucl. Sammon

47:9 Eucl. CCA

26:3 SKLAN Sammon

51:6 SKLAN CCA

Fig. 1: Embeddings & DR quality curves: (top) COIL-20 & COIL-100, (bottom)
MNIST & Frey faces.

Two variants of stress-based MDS are compared here, Sammon mapping and the
more advanced CCA. The SKLAN quantitatively improves local neighborhood
preservation for both, marginally for Sammon, strongly for CCA, the latter often
rivaling or even outperforming t-SNE with a simpler algorithm. Future work will
investigate how accelerated versions of the SKLAN and CCA can compete with
Barnes-Hut t-SNE [3] and UMAP [11].
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Fig. 2: Embeddings & DR quality curves: (top) Phoneme & Google, (bottom)
Abalone & Mouse RNA.
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