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Abstract. In natural cognition, confidence is used to evaluate the quality
of decisions and adapt one’s behavior to the task at hand. For now, arti-
ficial agents lack this kind of metacognitive ability and interact with their
environment in a purely reactive way. Inspired by recent findings about
the cognitive modeling of confidence, we propose a novel architecture for
sequential decision-making. It combines an evidence accumulation model
with a metacognitive module that computes and exploits confidence to
tune the decision process. The model has been assessed on a perceptual
decision-making task, showing promises for more flexible artificial agents
and a possible path towards artificial metacognition.

1 Introduction

Everyday, we make a myriad of choices regarding many topics, big and small.
Decision-making, the cognitive process leading to a decision, is one of the key
skills to adapt to one’s environment and reach one’s goals. At the cognitive
level, a number of these decisions are taken in a reactive and implicit way, using
knowledge and associations learned through previous experiences. For example,
when asked if 2 + 2 = 5, chances are you would answer immediately without
any explicit reasoning. But some other decisions are tougher to make, either
because of the imperfections in the information guiding the choice, or because of
the stakes involved [1]. Imagine, for example, that you are preparing yourself for
an upcoming test. Before the big day, deciding whether or not you understand
the material well enough to stop studying is not an easy choice to make. After
taking the test, you might reflect (more or less anxiously) on your answers, try-
ing to assess your performance level. Both cases imply a form of self-evaluation
regarding your cognitive processes and an explicit deliberation which might in-
hibit a too simple reactive decision and promote instead a contextually more
adapted decision. The ability to reflect on, evaluate and control one’s mental
functions is called metacognition. This practice of ”thinking about thinking” is
a key skill to adapt to complex problems and changing environments.
Concerning the first aspect of reactive and implicit decision making, Artifi-
cial Intelligence (AI) has proposed several approaches, including reinforcement
learning with a slow learning based on reward prediction errors. Similarities at
both the behavioral and computational levels have been reported with reactive
decision making in animals [2]. AT has only recently begun to consider explicit
and deliberative decision making, mainly by proposing ways to emulate delibera-
tion, like with Chain-of-Thought prompting in Large Language Models [3]. Yet,
this kind of method is still very preliminary, with an unreasonable computational



cost and far from some human characteristics (e.g., flexibility, explainability) [4].
In addition, the stage of self-evaluation playing a major role before the explicit
control of cognitive processes is largely neglected in modern Al

Another line of research more associated with experimental psychology has
proposed to explicitly model the sequential deliberative process of decision mak-
ing as accumulation of evidence [5]. Initially designed for binary choices and
not considering the learning phase, this model family has been extended to ease
the implementation of coupled learning and decision in cognitive agents [6] and
studies to assess its biological plausibility have been proposed [7]. Such models
are very interesting because they can provide quantitative explanations of psy-
chometrics and chronometrics of decision making, but under the condition that
an accepted error rate can be given a priori to the model.

Artificial agents lack the capacity to reflect upon themselves, to question their
choices and behaviors. Augmenting them with metacognitive abilities could be
essential to improve their performance, but also their acceptability. In partic-
ular, the ability to evaluate one’s ability to make a decision, that is also called
confidence, is a necessary step. A simple but efficient way of implementing such
a mechanism in a sequential decision process is described below and evaluated
on a simple perceptual task.

2 Related work

2.1 Sequential decision-making

A decision is a deliberative process that results in the commitment to a cate-
gorical proposition [8]. Decision making is generally a sequential process, either
because we need time to collect informative cues, one after the other (like a
detective collecting pieces of evidence) or because we need time to process each
cue, one after the other (like a chess player).

A popular class of models assumes that a decision maker accumulates pieces
of evidence for each alternative until a threshold is reached for one alternative.
Such accumulation-to-threshold models are known as sequential sampling models
or evidence accumulation models (EAM). One of the first and most popular
EAMs is the Diffusion Decision Model (DDM), also called Drift-Diffusion Model,
originally designed in the 1970’s [9] to study binary choices.

This class of models is used to study the time constraints of decision by
accumulation [10]. The intuitively understandable balance between response
time and accuracy is called the speed/accuracy trade-off (SAT) [11].

In their simplest form, evidence accumulation models have three parameters:
the boundary separation a that implements the SAT, the starting point z that
represents the pre-decision bias in favor of one of the responses, and the drift
rate v that models the speed of evidence accumulation processing.

Many subsequent works have refined this seminal model to account for mul-
tiple choices [12], change of mind [13] or impacts of learning on the decision
outcome [14], [15].
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Fig. 1: Tlustration of the Diffusion Decision Model [10]

2.2 Confidence in decision-making

Everyone knows intuitively what confidence is about, yet it is seldom defined
explicitly. In the broadest sense, confidence quantifies a degree of belief in some-
thing or someone [16], where a belief can be defined as a feeling of certainty
about a proposition (i.e. a statement or a decision). It is a subjective, con-
scious experience. Confidence is fundamentally linked to its object: a thought,
a choice, an external actor, etc.

In decision-making, confidence can be seen as the subjective estimate of
decision quality [17]. More formally, it can be defined as the probability that a
choice is correct given the evidence [18]. Confidence is a form of certainty. A key
difference is that contrary to confidence, (un)certainties are decision independent
[1]. Confidence quantifies the degree of certainty associated with a decision.

When using an evidence accumulation model to study the decision process,
a simple and natural way of evaluating confidence is by computing the differ-
ence between accumulators for each alternative. The larger the gap, the higher
the confidence should be, reflecting a more robust decision. Furthermore, this
approach is biologically grounded [19].

3 Proposed model

Taking into account the previous literature on confidence and human decision-
making, we designed a model for an artificial agent including two components:

o A decision module which uses an evidence accumulation model to select
the chosen alternative.

e A metacognitive module which tunes the decision process through adjusting
the decision hyperparameters (threshold and rate of evidence integration;
the starting point is not considered in the task here).



The decision module’s evidence accumulation is based on a race model. Ev-
idence favoring each alternative is accumulated separately, and the decision is
taken once the first accumulator reaches the threshold.

The metacognitive module uses the difference between accumulators to com-
pute the confidence associated with the decision. Confidence is then used to
tune the decision process, implementing the metacognitive ability of switch-
ing between different strategies. For example, detecting a low confidence value
should trigger a more cautious approach and consequently a longer time of ev-
idence accumulation; conversely, being more confident should lead to a quicker
decision.
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Fig. 2: Task and agent model

The model was trained on an adaptation of the Random Dot Motion (RDM)
task. This well-known psychophysical experiment continuously presents a set of
moving dots to the subject, who has to make a decision regarding their move-
ment: do the majority of dots move to the left or to the right? The experimenter
can modulate the difficulty of the task through several factors, notably the co-
herence of the dot cloud (percentage of dots moving in the same direction).

4 Experimental validation

The model was implemented in Python and trained on a custom Gymnasium
environment mimicking the RDM task. Two variations of the task were used:
one with a strong coherence between dots and another with more random move-
ments.

At each timestep of a training episode, information about dots is provided



to the model as raw pixel values. Integrating this evidence in the corresponding
accumulator, the agent can decide to wait for more data or make a decision re-
garding the dot movement (which ends the episode). After each episode, rewards
are considered a posteriori by the model to adjust the metacognitive process.

The first results demonstrate how the metacognitive module alters the deci-
sion process. They indicate that the agent model is able to implement a Speed-
Accuracy Tradeoff [11], a hallmark of human cognition.
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Fig. 3: Experimental results. (a) Easy environment: high confidence and short
decision process. (b) Harder environment: low confidence and longer process.

5 Conclusion and perspectives

Human decision-making is of sequential nature and characterized by our ability
to reflect upon ourselves and adapt our behavior accordingly. A growing body
of work at the crossroads of psychology and computational neuroscience studies
the role of confidence in the decision process, and its formation in the brain.

Drawing from these premises, we defined a model for a metacognitive artificial
agent able to evaluate its confidence and use it to adapt its decision process
on-the-fly. We tested this model on a classic perceptual decision task. First
results show the positive (and expected) impact of metacognition on the agent’s
behavior.

Ongoing works are carried out to consolidate the first results regarding con-
fidence evaluation and use in decision making. Further developments will be
needed to refine and extend the cognitive architecture to more general aspects of
metacognition, towards autonomous and flexible behavior of an artificial agent.
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