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Abstract. Online Continual Learning (OCL) methods train a model on
a non-stationary data stream where only a few examples are available at a
time, often leveraging replay strategies. However, usage of replay is some-
times forbidden, especially in applications with strict privacy regulations.
Therefore, we propose Continual MultiPatches (CMP), an effective plug-
in for existing OCL self-supervised learning strategies that avoids the use
of replay samples. CMP generates multiple patches from a single exam-
ple and projects them into a shared feature space, where patches coming
from the same example are pushed together without collapsing into a sin-
gle point. CMP surpasses replay and other SSL-based strategies on OCL
streams, challenging the role of replay as a go-to solution for self-supervised
OCL. Code available at https://github.com/giacomo-cgn/cmp .

1 Introduction

The goal of Continual Learning (CL) is the continuous adaptation of deep neural
networks to non-stationary streams while accumulating knowledge [14]. In this
paper we focus on three desiderata, which are often lacking in state-of-the-art
methods: fast adaptation in an online stream, learning without explicit super-
vision and without access to replay.
Recently, there has been a growing interest in Online Continual Learning (OCL)
[15], a challenging scenario in which the model sees the data in a single pass.
At each timestep, the model has access only to a small minibatch of data. As
a result, OCL naturally limits the computational budget and requires models
that are able to converge quickly with minimal data. Until now, most research
in OCL has focused on supervised methods. However, this assumption may
be unrealistic since for many real-world applications labels are not immediately
available. Self-Supervised Learning (SSL) has emerged as an effective paradigm
for training deep neural networks from unlabeled data. Previous work in CL
even suggests that SSL methods may be more robust to catastrophic forgetting
compared to equivalent supervised methods [7, 8].
The main limitation of SSL methods is their high computational cost, leading
to methods that are slow to converge and require large minibatch sizes. In
this paper, we explore Online Continual Self-Supervised Learning (OCSSL), the
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Fig. 1: Comparison between CMP (left) and ER (right) in OCSSL. While ER
requires an external memory buffer, CMP only requires the current example x.

problem of adapting SSL methods to an OCL scenario [12]. In this setting,
the main challenge arises from the limited amount of data available at each
timestep, which results in an overall small computational budget. This issue is
usually tackled in OCSSL by leveraging Experience Replay (ER) [3], which con-
catenates minibatches from the stream with samples from the memory buffer M.
Recent work [6, 16] introduced the concept of extracting multiple patches from
a single image in SSL, with the aim of speeding up the training process. Based
on these findings, we introduce Continual MultiPatch (CMP) to extend Instance
Discrimination SSL methods [11] to multiple patches instead of the standard two
views. Like ER, CMP extends the minibatch size by adding multiple patches.
However, unlike replay, CMP does not require an external memory buffer and
does not store previous data (with advantages for scalability and data privacy).
Our experiments on challenging class-incremental OCL benchmarks show that
CMP is able to surpass the performance of replay-based strategies as well as
comparable OCSSL approaches under a restricted computational budget.

2 Related Works

SSL trains a feature extractor θ : X → F to map inputs x ∈ X to latent
representations z ∈ F . Training involves pretext tasks on unlabeled data, while
the evaluation is usually conducted with linear probing on downstream tasks.
We focus on instance discrimination SSL methods, where the pretext task aligns
two augmented views of the same sample in feature space via contrastive loss
[4], additional predictor head [5], clustering [2] or redundancy reduction [1].
In OCL [15], the model faces a non-stationary sequence of data D = (D1,D2, . . .)
where each Di is composed by a very small number of examples (e.g., usually
from 1 to around 10). We consider class-incremental data streams [14], where
drifts between a given Di and Di+1 introduce examples sampled from unseen
classes. Interestingly, in OCL drifts do not occur after each Di and the model
does not know when the drift occurs (boundary-free stream). This contrasts
with many SSL methods for CL that require to know in advance when a drift
is introduced [9]. In addition, OCL approaches (both with and without SSL)



usually employ replay to increase the amount of examples available at each
training iteration and to mitigate forgetting [13, 15, 17, 13].
Our approach is replay-free and works without access to boundaries by leveraging
the idea of building multiple patches from a single example. This idea is already
present in BagSSL [6] and EMP-SSL [16] but it has not been applied to CL, yet.
EMP-SSL loss enforces similarity between each patch latent representation and
their average. EMP-SSL also uses the Total Coding Rate LTCR (Section 3) to
avoid the collapse of latent representations into a single point.

3 Continual MultiPatches

We propose Continual MultiPatches, an SSL method that is i) replay-free, ii)
does not require knowledge about boundaries in the stream and iii) is generally
applicable on top of Instance Discrimination SSL strategies [11]. As shown
in Figure 1, CMP extracts a set of N patches x1, ..., xN by applying different
transformations to the original sample x. Then, given an encoder network θ,
CMP computes the latent representations z1, ...zN for each patch: zi = θ(xi).
Let us call LSSL the loss of the underlying instance discrimination SSL method,
then CMP loss reads:

LCMP = βLTCR([z1, ..., zN ]) + α

N∑
i=1

LSSL(zi, zavg) , (1)

where zavg =
∑N

i=1 zi
N is the average of the patch representations, α and β are

scalar hyperparameters, and LTCR is Total Coding Rate loss, defined as:

LTCR([z1, ..., zN ] = Z) =
1

2
log det
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ZZ⊤

)
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where b is the batch size, ϵ > 0 a chosen size of distortion, and d the dimension of
the feature vectors. Compared to existing multi-patch strategies, our formulation
acts as a plug-in for other SSL models, thus being able to exploit and improve
over the advantages they already provide.

We now describe the application of CMP to two popular SSL methods: Sim-
Siam [5] and BYOL [10].

SimSiam-CMP. SimSiam uses an additional projector network, called the pre-
dictor P , to further project the two representations z1, z2. Given the cosine
similarity function Sc, SimSiam loss reads:

LSimSiam = −Sc(stopgradient(z1), p2)− Sc(stopgradient(z2), p1) , (3)

where representation collapse is avoided by preventing gradient flow through z1
and z2. We design SimSiam-CMP, which applies our CMP on top of SimSiam,
with the following loss:

LSimSiam-CMP = βLTCR([z1, ..., zN ])+α

N∑
i=1

−Sc(stopgradient(zavg), pi) . (4)



SSL Method Strategy M size
Probing Accuracy

CIFAR-100 ImageNet100

EMP-SSL - 0 28.5± 0.6 32.7± 1.1

SimSiam

finetuning 0 17.9± 0.7 11.7± 0.5

Reservoir ER 500 29.1± 0.2 33.5± 0.5

Reservoir ER 2000 27.6± 0.4 39.5± 0.5

FIFO ER 90 25.5± 0.5 30.0± 1.7

CMP (our) 0 30.2± 0.7 33.3± 0.7

BYOL

finetuning 0 13.3± 0.0 11.3± 0.2

Reservoir ER 500 34.0± 0.5 33.9± 0.2

Reservoir ER 2000 32.0± 0.1 40.3± 0.7

FIFO ER 90 27.6± 0.7 29.8± 0.8

CMP (our) 0 34.6± 0.7 46.3± 0.3

Table 1: Linear probing accuracy on Split CIFAR-100 and Split ImageNet100.
We report results mean and standard deviation across 3 runs. Best in bold.

BYOL-CMP. Like SimSiam, BYOL also uses the predictor P . BYOL keeps a
copy of the encoder θ, called θ′, updated via the Exponential Moving Average
(EMA) of θ weights. Given z′1, z

′
2 the representations extracted with θ′, BYOL

loss is defined as follows:

LBYOL = MSE(z′1, p2) +MSE(z′2, p1) , (5)

where MSE is the mean squared error and z′1, z
′
2, p1, p2 are the ℓ2-normalized

z′1, z
′
2, p1, p2, respectively. We adopt the same approach as for SimSiam and

propose BYOL-CMP with the following loss:

LBYOL-CMP = βLTCR([z1, ..., zN ]) + α

N∑
i=1

MSE(z′avg, pi) . (6)

Unlike SimSiam, BYOL-CMP leverages the normalized features encoded by θ′

instead of the ones encoded by θ.

4 Experiments

We conducted experiments on two OCSSL class-incremental streams: Split
CIFAR-100 and Split ImageNet100, with 20 splits each. We set the stream-
ing minibatch size bs to 10 (i.e., number of examples available at each training
iteration), and, for each, CMP extracts 20 patches, resulting in a final batch size
of 200. We chose ResNet-18 as the backbone network, optimized using SGD with
0.9 momentum and 1× 10−4 weight decay. We conducted a grid search to select
learning rate, α and β on a held-out set of 10% validation data. After training
on the data stream, evaluation was performed via linear probing, as commonly
done in SSL. The probe was trained with a 0.05 learning rate, reduced by one



third whenever the validation accuracy stopped improving. Training stopped
after 100 epochs or when the learning rate decreased below 1e−4.

Baselines. We compared both SimSiam-CMP and BYOL-CMP against their
base SSL variants. We also pair them with ER strategies that extend the stream-
ing batch size with 90 replay samples at each step, resulting in the same final
batch size of 200 as CMP, after the standard SSL two-views augmentations. ER
buffers are either filled with reservoir sampling (memory size 2000 and 500) or
with a FIFO buffer, which is composed of the last 90 streaming examples (up-
dated with FIFO policy). In FIFO ER, at each iteration, the model is trained on
the buffer plus the current streaming batch. This allows to keep only the most
recent examples into consideration, thus comparing CMP with an ER strategy
with minimal past bias.

Results. In Tab. 1 we report the linear probing accuracy computed at the end
of training on all the stream. CMP surpasses all ER-based methods, except for
SimSiam with M size = 2000. This is surprising, as ER is often considered as
the best-performing method in CL, if not even a requirement needed to mitigate
the small amount of streaming examples available at each step. In particular,
BYOL-CMP is the best-performing method across both benchmarks. This clari-
fies and explains the advantage of CMP compared to EMP, since CMP is able to
combine the benefits of the EMA-updated encoder from BYOL with the multiple
views per minibatch of CMP. A similar protocol could improve the performance
of other SSL methods as well.
Our hypothesis that increasing the minibatch size at each training step is crucial
for the final performance is validated by CMP, which achieves more than dou-
ble the accuracy of simple fine-tuning (where the minibatch is not extended).
constraints on buffer availability hinder performance, confirming that CMP en-
hances fast adaptation in OCSSL scenarios.
Interestingly, in CIFAR-100 having a larger ER buffer (2000 vs. 500) reduces
the performance, while it is not the case for ImageNet100. Our hypothesis
is that when a smaller set of samples is used for replay, the model is able to
converge quicker than with a larger number (as each single example is used
in more training iterations). This assumptions holds for simpler datasets, like
CIFAR-100, which need less generalization abilities and for which few samples
are representative enough. This is not true in more complex benchmarks, such
as ImageNet100, which require more generalization capabilities and thus benefit
from a more diverse set of examples.
Overall, we find CMP to be an effective solution for OCSSL scenarios, offering a
competitive replay-free approach that is competitive or superior with respect to
existing replay-based OCSSL approaches, even the ones also leveraging multiple
patches like EMP-SSL.



5 Conclusion

We presented CMP, a self-supervised method designed for OCL streams, where
no information about data drift is available and where only a few examples can be
accessed at a time. Our results show that CMP is not only able to learn effective
representations online, but it also surpasses the performance of replay strategies,
which are commonly considered an essential component of OCL. Instead, our
CMP achieves a strong performance without any external buffer, hinting at the
fact that once an SSL method is able to learn online, it is also able to mitigate
forgetting without the need for revisiting previous samples.
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