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Abstract. This paper uses a set of explainable AI (xAI) methods to
study human behavior in a spatial navigation task. First, locomotion and
gaze dynamics of human subjects recorded during the task were repro-
duced in a virtual environment and visual snapshots extracted from this
simulation were used as a dataset. Second, the dataset was used to train
a deep convolutional network to reproduce human navigation decisions.
Third, network strategies used for image classification were analyzed us-
ing a combination of three xAI methods. Using this analysis, we discovered
a specific oculomotor marker that indicated the behavioral strategy used
by human participants in this task. We conclude that xAl is a promising
approach to study human behavior in complex real-world tasks.

1 Introduction

Deep Artificial Neural Networks (AANNs) are tools of growing importance in
cognitive science research [1]. In current applications, dANNs are often used
as neural models of the brain or as data mining applications aiding complex
data analyses [2, 3, 4, 5]. This work uses a different approach, whereby we (i)
train a dANN to reproduce human behavior in a vision-based behavioral task, in
which the reason for different behavioral patterns is unclear; (i) we apply a set
of explainable AI methods to analyze strategies that the network used to solve
the task, allowing us to get insight into subtle behavioral differences underlying
human decisions.

To show the potential of this approach we took as an example a recent spa-
tial navigation experiment conducted in our lab [6]. In this experiment, human
participants were asked to remember the location of a hidden goal in a large rect-
angular room with landmarks on the walls (Fig.1 a, b). After several learning
trials, the landmark array was rotated (without the participant’s knowledge)
so as to create a conflict between the landmarks on the walls and geometric
room cues. The participants were asked to navigate to the same goal location
as before. The results show that about half of the participants followed the ro-
tated landmarks, whereas the other half followed the unchanged geometric cues
(Fig.1 ¢, d). The reason for distinct behavioral patterns in this experiment is un-
clear, but it is likely that some subtle behavioral differences in visual exploration
strategies can provide insights into human behavior. To explore this possibility,



we trained AlexNet dANN to classify images extracted from a 3D reconstruction
of the human experiment into ”landmark” and ”geometry” classes. We then ap-
plied receptive field analysis [7], layer-wise relevance propagation (LRP) [8] and
subsequent heat map analysis with spectral clustering (SpRAy)[9] methods to
study our dANN classification strategies.

Fig. 1: Behavioral experiment. a: Training environment. Disoriented partici-
pants placed in a start location (s1 - s4) were asked to locate the unmarked goal
G. b: Probe trial, after cue rotation. Participants who went to the L corner
followed rotated landmarks. Those who went to the G or S corners followed
room geometry. ¢, d: Behavior of the participants belonging to the landmark
or geometry group.

2 Methods

2.1 Training image set

The behavioral experiment was conducted in a well controlled environment
equipped with motion capture (MoCap) and eye tracking data [6], allowing us
to reproduce locomotion and gaze dynamics of 40 human subjects in a virtual
copy of the real environment, created in Unity3D. N = 65000 2D images (visual
snapshots) were extracted from Unity (frequency 60 Hz) during the period of
visual exploration, between the trial start and the first navigation step taken,
for all trials and all subjects. The images were preprocessed by (i) resizing the
images to 256x256 pixels and (%) normalising the pixels value. Since all people
navigated in the same simple environment, many images were extremely sim-
ilar for both classes. This resulted in many false positives after training. To
solve this issue, we removed all nearly identical images from the dataset (using
euclidean distance metric). The image set was then randomly separated into
training, test and validation sets.



2.2 Neural network training and analysis

The convolutional dANN AlexNet was first pre-trained on the Places365 image
set [10] to classify scene images into 400+ scene categories. AlexNet was chosen
for its simplicity and due to the fact that most of the xAI methods used for the
analysis were developed and tested using this network architecture. Moreover,
there was no reason to look for more complicated architecture, as the network
already displayed good performance (Fig.2). Next, we set the weights of the
last convolutional layer to 0 and retrained the network to classify images in our
dataset into ”geometry” and ”"landmark” classes, as is often done in transfer
learning problems [11].

To analyze the network strategies, we first used the method by Zhou et al. [7],
to obtain ”receptive fields” of the neurons in the last convolutional layer. Briefly,
top-10 images preferred by each neuron in this layer were first extracted. These
images were then locally modified in order to see which image pixels induced the
largest change in the neuron’s activity.

Second, the LRP method [8] was used to generate, for each image in the
dataset, a heat map of pixel importance for its classification into one or the other
class. In contrast to neurons receptive fields, which evaluate the importance of
different image pixels for activating a particular neuron, heat maps evaluate the
image pixels that are important for the whole network for correct classification.

AlexNet pretrained on Places365, accuracy as a function of epochs AlexNet pretrained on Places365, loss as a function of epochs
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Fig. 2: Accuracy (left) and loss function (right) of the network during learning
with the training data in blue and testing data in orange. Table: Confusion
Matrix of the selected epoch. Red dot: selected epoch.

Third, we used the SpRAy method [9] to understand which strategies the
network used for classification. More specifically, a distance matrix was created
from the ensemble of heatmaps. Next, spectral clustering was used on the dis-
tance matrix to separate heat maps into clusters. Each cluster corresponds to a
particular image classification strategy learned by the network.

3 Results

Perhaps surprisingly, the dANN was able to classify images with a very good
accuracy of 92.6% (Fig. 2). The biological interpretation of this result is that



Fig. 3: Receptive fields and LRP heatmaps. a: An image from the training
dataset. b: Receptive field of the 252th neuron. c-d: Examples of LRP heatmaps
from the geometry (c¢) and landmark (d) classes. In each plot: left - the original
image; right - resized image; middle- the LRP heatmap with red pixels important
for the classification into the geometry class and blue pixels important for the
classification into the landmark class.

only one image from a person visually exploring the environment (even before a
person makes a first goal-directed movement) is sufficient for the network to tell
whether a person will follow landmark cues or room geometry when looking for
a hidden goal. The rest of this section describes the approach we took in order
to understand image-processing strategies adopted by the network, hoping that
it will provide insights into human behavior.

We obtained the receptive fields of 256 neurons in the last convolutional layer
(see Fig. 3a,b for an example). This information was used to separate images
into clusters according to different strategies as follows: To obtain strategies
used by the network, we used LRP to generate heat maps of pixel importance
for all images in the dataset (see Fig. 3c¢,d for examples). These heatmaps were
then separated into different image clusters, corresponding to different network
strategies, using spectral clustering [9]. This method has determined 555 differ-
ent strategies for the geometry class and 291 strategies for the landmark class.
Most image clusters contained different variations of the same environmental
feature, such as ATM. The strategies used by the network corresponded to sim-
ilar environmental features in both the landmark and geometry classes. For
example, the ATM was the main environmental feature present in one cluster of
the landmark class and one cluster on the geometry class (Fig. 3¢,d). How does
the network decide to put these very similar images into two different classes?
We noticed that representative images of many clusters in this category had only
one main difference between the two classes: the main feature was viewed from
an oblique angle in the geometry class and straight ahead in the landmark class.
We tested this hypothesis by computing the angle between the gaze and the
wall along the Y axis in the virtual environment, on all images in the identified
clusters (Fig. 4a). The distribution of gaze vector angles in Fig. 4a shows that
the participants in the geometry group indeed looked at image features with



more oblique angles. One reason for this behavior could be that looking along
the wall, rather than straight to it, could provide more information about the
wall length — a geometric cue.

We then checked to what extent this behavior is true in the whole set of
recorded images, not just in a particular cluster. While this did not appear to
be the case in the full set of images (Fig. 4d), it was in the images from the
first training trial (Fig. 4b for vertical direction and Fig. 4c for the horizontal
direction). The first trial is different from all other trials, because the subject sees
the environment for the first time. This result indicated that human participants
from the geometry group express a particular type of behavioral strategy, absent
from the participants in the landmark group.
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Fig. 4: a: Distribution of angle between gaze vector and wall normal around
Z-axis for chosen clusters. b: Distribution of angle between gaze vector and
wall normal around x-axis for first trial of all participants. c¢: Distribution of
angle between gaze vector and wall normal around Z-axis for first trial of all
participants. d: Distribution of angle between gaze vector and wall normal
around Z-axis for all data.

4 Conclusion

In this article, we demonstrated the use of a new Al-based approach to study
human behavior. Instead of using a network directly as a model of human brain
or as an analysis tool for data mining, we used it to discover behavioral patterns
in a complex behavioral task. By asking a neural network to solve a problem
similar to what human participants were asked to do in the experiment, and then
using xAI methods for analysis, we obtained new insights on human behavior



that participants were not able to verbalize. This method allowed us to shed a
new light on experimental data and characterize subtle behavioral patterns spe-
cific to a particular subject group. In particular, our results extend the previous
findings by Becu et al. 2020 by suggesting that geometry-related preference in
navigating humans is expressed not only by looking at the floor (proposed as
a general strategy in their work), but also rely on looking at a wider range of
angles oblique to the walls. It helps to resolve a puzzling observation that very
often geometry-preferring subjects looked at landmarks, an unnecessary behav-
ior within a suggested floor-based strategy. A subtle difference in the looking
angle, discovered by our method, proposed a novel explanation for this obser-
vation and suggested a simple oculomotor marker of geometry-based strategies
which are principally used by aged navigators (Becu et al 2020, 2022).

We believe that this method is not limited only to behavioral data, as the
same approach we used to analyze oculomotor and behavioral data can in princi-
ple be used to study behavioral correlates of neural activities, recorded by fMRI
or EEG.
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