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Abstract. We present a hierarchical, control theory inspired method
for variational inference (VI) for neural stochastic differential equations
(SDEs). While VI for neural SDEs is a promising avenue for uncertainty-
aware reasoning in time-series, it is computationally challenging due to
the iterative nature of maximizing the ELBO. In this work, we propose
to decompose the control term into linear and residual non-linear compo-
nents and derive an optimal control term for linear SDEs, using stochastic
optimal control. Modeling the non-linear component by a neural network,
we show how to efficiently train neural SDEs without sacrificing their ex-
pressive power. Since the linear part of the control term is optimal and
does not need to be learned, the training is initialized at a lower cost and
we observe faster convergence.

1 Introduction

Continuous-time models of dynamical systems provide a powerful framework
for capturing the intricate variations in real-world phenomena. Among these,
stochastic differential equations (SDEs) extend the capabilities of deterministic
models by abstracting away unaccounted factors into instantaneous noise. SDEs
naturally model various processes, including the motion of small particles (e.g.,
molecules) and financial market dynamics. When combined with neural net-
works [1,2], they become expressive tools for learning from irregular time-series
observations.

Despite their promise, path-wise inference for neural SDEs remains a no-
torious challenge due to the complexity in fitting the non-Gaussian posterior
distributions. Variational inference (VI) has become a prevalent tool with sig-
nificant success in scaling inference methods [3]. Yet, computational challenges
persist.
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Existing works attempt to address these issues in VI for neural SDEs in
various ways. Park et al. [4] introduced finite-dimensional matching for efficient
path comparison to train neural SDEs. Kidger et al. [5] adopted a generative-
adversarial approach to train these models. Course and Nair [6] proposed an
amortized method for fast VI in latent neural SDEs, scaling efficiently with data
size using a linear posterior. However, resorting to linear posteriors is a severe
limitation in practice.

Inspired by optimal control theory, we propose a novel approach to efficiently
perform VI in neural SDEs. Our key idea is to represent the prior as the com-
bination of a linear model and a residual non-linear model. We leverage this
decomposition to split the control function—used to compute the variational
posterior—into two components. The first linear component is tractable and
admits a closed-form solution, making it computationally efficient but less ex-
pressive. The residual non-linear component, modeled by a neural network,
captures higher-order effects at the cost of iterative optimization. We combine
the strengths of these two approaches. First, we compute the linear part in
closed form, which serves as an efficient initialization for the neural network
modeling the non-linear residual. This hierarchical design allows us to achieve
faster and more stable inference compared to existing approaches that directly
model the full control term [2,3].

In summary, our contributions are:

1. We derive the optimal control function solution for VI of a linear SDE driven
by Brownian motion (BM), or by Markov–approximated fractional BM.

2. We propose a neural SDE model with a linear and a residual non-linear
(neural network) part, both for the prior SDE and the control terms, for
which the linear part is optimal and does not need to be optimized or learned.

3. We show that our proposed model trains faster and more stable than a stan-
dard non-linear network model on a financial data.

We will make our implementation publicly available upon publication.

2 Variational Inference of Stochastic Differential Equa-
tions

Definition 1 (SDEs driven by BM (BMSDE)). A common generative model
for stochastic dynamical systems considers a set of observational data D =
{O1, . . . , OM}, where the Oi are generated (conditionally) independent at ran-
dom at discrete times ti with a likelihood pθ (Oi | X(ti)). The prior information
about the unobserved path {X(t); t ∈ [0, T ]} of the latent process X(t) ∈ RD is
given by the assumption that X(t) fulfils the SDE:

dX(t) = bθ (X(t), t) dt+ σθ (X(t), t) dB(t) (Prior-SDE)

The drift function bθ (X(t), t) ∈ RD models the deterministic part of the change
dX(t) of the state variable X(t) during the infinitesimal time interval dt, whereas
the diffusion matrix σθ (X(t), t) ∈ RD×B encodes the strength of the added Gaus-



sian white noise process, where dB(t) ∼ N (0,dt) ∈ RB is the infinitesimal in-
crement of a vector of independent Wiener processes during dt.

Definition 2 (Posterior SDE). The paths of the Prior-SDE can be steered by
adding a control term u(X(t), t) that depends on all variables to be optimised
and the observations, to the drift resulting in the variational posterior [2, 7]:

dX̃(t) =
(
bθ

(
X̃(t), t

)
+ σθ

(
X̃(t), t

)
u
(
X̃(t), t

))
dt+ σθ

(
X̃(t), t

)
dB(t) (1)

In what follows, we will assume a parametric form for the control function
u(X̃(t), t) ≡ uϕ(X̃(t), t) and will recall a scheme for inferring the variational
parameters (θ, ϕ), i.e. variational inference.

Proposition 1 (Variational Inference for BMSDE [2, 7]). The variational pa-
rameters ϕ are optimised by minimising the KL–divergence between the posterior
and the prior, where the corresponding evidence lower bound (ELBO) is maxi-
mized to find the most likely parameters θ:

M∑
i=1

log p (Oi | θ) ≥ EX̃

[
M∑
i=1

log pθ

(
Oi | X̃(ti)

)
−
∫ T

0

1

2

∥∥∥uϕ

(
X̃(t), t

)∥∥∥2 dt] (2)

where the observations {Oi} are included by likelihoods pθ

(
Oi | X̃(ti)

)
and the

expectation is taken over random paths of the approximate posterior process de-
fined by (eq. (1)).

3 Optimal Control for Variational Inference for SDEs

Our approach uses optimal control to decouple the possible linear and non-linear
effects in the drift. While the linear part is easier to solve in closed-form, the
non-linear terms will account for the complex variations in real data. In the
sequel, we describe these two parts, respectively, finally leveraging the strengths
of both.

3.1 Optimal posterior control term for a linear prior SDE

The control term u(x, t) := uϕ(x, t) can be obtained explicitly from the solution
of the transformed Hamilton–Jacobi–Bellman equation (HJBE) [8–10]:

u(x, t) = σθ(x, t)
⊤∇x logEprior

[ ∏
i:ti>t

pθ (Oi | X(ti)) |X(t) = x

]
. (3)

In general, such expectations over the paths of the Prior-SDE involve solv-
ing second order partial differential equations in the D + 1 variables and are
intractable in closed form. However, in what follows, we will show how to com-
pute it exactly when both the prior process X(t) and the observation likelihood
are Gaussian. This requires the drift bθ (x, t) to be a linear function in x, and
the diffusion σθ(t) independent of x.



Proposition 2. For a process X(t) with linear drift and state-independant dif-
fusion σ(t) where we have M observations O = [O(T1), . . . , O(TM )] after time
t, the optimal control term takes the form:

u(x, t) = σ(t)⊤∇x logN (O;mx,C +Σ0) (4)

= σ(t)⊤ (∇xmx)
⊤
(C +Σ0)

−1 (O −mx) , (5)

where p(X(T )|x) = N (mx,C) is the joint Gaussian distribution of the solutions
of the prior SDE X(T ) = [X(T1), . . . , X(TM )] conditioned on X(t) = x having
mean vector by mx and covariance matrix by C. The observation likelihood is
assumed to be of the form N (O; 0,Σ0).

Sketch of the proof. Under these assumptions, the expectation in eq. (3) forX(t)
becomes an M dimensional Gaussian integral of the form:

Eprior [. . .] =

∫
p(X(T )|x)p(O|X(T )) dX(T ) = N (O;mx,C +Σ0) . (6)

Specifically, for a one–dimensional process X(t) ∈ R parameterized by λ ∈
R+, η ∈ R and constant diffusion ς ∈ R+:

dX(t) = (−λX(t) + η) dt+ ς dB(t) (7)

we can write the solution at some later time T conditioned on the state x at
current time t as [11]:

X(T ) = xe−λ(T−t) +

∫ T

t

e−λ(T−s)η ds+

∫ T

t

e−λ(T−s)ς dB(s) (8)

which leads to the mean and covariance:

mx(i) = E [X(Ti|X(t) = x] = xe−λ(Ti−t) +
η

λ

(
1− e−λ(Ti−t)

)
(9)

C(i,j) = Cov (X(Ti), X(Tj)) = ς2
∫ min(Ti,Tj)

t

e−λ(Ti−s)e−λ(Tj−s) ds (10)

= ς2
e−λ|Ti−Tj | − e−λ(Ti+Tj−2t)

2λ
. (11)

3.2 Incorporating non-linear residual terms

We propose to define a prior SDE composed of linear and non-linear drifts as

dX(t) = (−λθX(t) + ηθ + bθ (X(t))) dt+ (ςθ + σθ(X(t))) dB(t) (12)

where bθ(·) and σθ(·) are non-linear functions (e.g. neural networks) and θ
indicates learnable parameters. Equivalently, the control term is defined as

u(X̃(t), t) ≡ uc(X̃(t), t) + uϕ(X̃(t), t) (13)
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Fig. 1: We show the loss (negative ELBO) curves of the models driven by BM
(left) and MA-fBM (right). For both experiments, our proposed hybrid model
(green) starts training with a loss that is multiple orders of magnitude smaller
and converges much faster than a standard non-linear neural network model
(blue). Our hybrid model (green) also performs better than the strictly linear
model (orange), especially for the MA-fBM experiment.

where uc(·) is the analytical optimal control solution (eq. (5)) that depends on
λθ, ηθ and ςθ (eq. (9) and (11)) and uϕ is a residual non-linear control term,
modeled e.g. by a neural network. For a purely linear model, without the non-
linear components, the ELBO would be optimal by definition. However, such a
model would not be expressive, i.e., not be able to capture realistic, non-linear
data. The core idea of our work is to combine the linear terms with the residual
non-linear terms bθ(·), σθ(·) and uϕ(·) such that the training of the model is
more robust and fast, benefiting from the best of both worlds.

Furthermore, a crucial advantage of the linear model is the use of the tractable
log-likelihood function logN (O;mx,C+Σ0) to directly find λθ, ηθ and ςθ, with-
out having to solve computationally costly SDEs. This allows initialization of
training where the linear component is already optimal.

Extension to fractional Brownian motion (fBM). A method for varia-
tional inference for SDEs with long-term correlation, driven by fBM, was recently
proposed [3]. A Markov approximation of fBM (MA-fBM) is used, essentially
enlarging the state–space by multiple processes driven by a shared BM. This
allows variational inference in a similar way as explained in Section 2. Hence,
SDEs driven by MA-fBM readily benefits from our proposed methods.

4 Experiments

We apply our method on the first 500 days of the 3–Month US Treasury Bills1.
We compare the training of our proposed hybrid model with the non-linear
residual part to the training of a standard non-linear model and a strictly linear
model. We also apply our method to the SDEs driven by MA-fBM, presented
in Section 3.2. The non-linear prior drift bθ(·), diffusion σθ(·) and control term
uϕ(·) are neural networks. The observations are encoded by an additional neural

1https://fred.stlouisfed.org/series/DTB3



network into uϕ(·), as is typically done in VI for SDEs [2,3]. All neural networks
have three layers, 128 hidden neurons and the tanh activation function. The
observations noise Σ0 = 0.12I. For the MA-fBM experiment we set a Hurst
index of 0.65 which is a reasonable choice for this data [12]. Figure 1 shows the
loss (negative ELBO) curves of the three models, both for the models driven by
BM and MA-fBM.

5 Conclusion

We present an optimal control inspired method for efficient variational infer-
ence for (neural) SDEs. Under practically reasonable assumptions, we explicitly
formulate the control term with linear and residual non-linear components and
derive a closed-form control term for the linear part using stochastic optimal
control. This model is shown to converge faster than a standard non-linear
SDE, both for SDEs driven by BM and Markov-approximate fBM.

Future work and limitations. Our work applies only to 1-d SDEs, future
work will involve a multi-dimensional formulation. We also plan to cover latent
SDEs [6].
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