A new approach to multilayer SVMs

Joan Acero-Pousa and Lluis A. Belanche-Mufioz

School of Computer Science
Jordi Girona, 1-3, 08034, Barcelona - Catalonia, Spain

Abstract. Despite the traditional high performance of Support Vector
Machines (SVMs) in classification and regression tasks, modern data loads
have introduced new efficiency challenges, rendering SVMs incapable of
handling non-linear problems when the dataset size is large. On the other
hand, neural architectures have shown excellent results when dealing with
complex patterns in data. By leveraging kernel approximation techniques
and linear optimizations, this work introduces a multilayer SVM architec-
ture, presenting competitive performance against classical SVMs.

1 Introduction

Support Vector Machines (SVMs) have been a cornerstone in machine learning,
particularly for classification and regression tasks, due to a solid mathematical
foundation, use of the kernel trick and built-in regularisation [1]. In the era of big
data, SVMs have become less favourable in specific scenarios due to their use of
kernel matrices, resulting in prohibitive computational costs when dealing with
large datasets —O(n?) time and O(n?) space, being n the training sample size.
The exploration of multilayer SVMs, extending their capabilities by introducing
multiple layers of decision boundaries seems a natural development, albeit the
original SVM was not designed with this evolution in mind, and research in this
area is relatively unexplored. Key reasons are that training multilayer SVMs
could be even more computationally expensive than the classical single layer
version, and effective optimization techniques are essential. Also, as the model
complexity increases, there is a risk of overfitting the training data.

The earliest contribution [2] leverages the high-dimensional feature space of
one SVM as input for subsequent “layers” but, despite the title, it is specifi-
cally designed to solve n-th order ODEs; it does not address scalability for large
datasets or integrate modern kernel approximation techniques. In fact, [3] is
the only meaningful reference. The training process employs a min-max opti-
misation strategy: the hidden-layer SVMs work to minimise the dual-objective
function of the output-layer SVM, while the output-layer SVM seeks to maximise
its dual-objective function. In spite of its innovative approach, the proposal still
computes kernel matrices and uses backpropagation, hence the inefficiency is-
sue when dealing with moderate to large datasets remains basically unresolved.
Finally, the DHNKN [4] combines Random Fourier Features (RFFs) with per-
ceptron layers; it requires gradient descent to optimize a large number of pa-
rameters, inheriting all the troubles with backpropagation (training complexity,
vanishing gradients, local minima, etc).

This paper introduces a more workable proposal, based in the combination
of two essential ingredients: the avoidance of kernel matrices via approximation
techniques and the fact of solving only linear optimizations.

2 Multilayer SVMs

We first focus on a setting with a single hidden layer: in this setup, the ML-
SVM consists of an input “layer”, a hidden layer and an output layer —see Fig. 1.
Consider an input matrix X = (x1,...,X,), where x; € R i=1,...,n. The
number of features in the original space is d, and n is the number of observations.
The hidden layer transforms the input vector using a Gaussian RBF kernel
approximation based on RFFs [5]:
h! = 21(X) = \/z [cos(w] X +by), ..., cos(whHX + bD)]T (1)
Here, D is the number of RFF's used to approximate the kernel function, and
hence the dimension of the transformed data is h' € R**P. Moreover, w; € R
i=1,...,D arei.i.d. observations from the Fourier transform of a specific shift-
invariant kernel function, and b; € R i =1,..., D are i.i.d. observations from
the Uniform [0, 27| distribution [5]. Next, h! = (x1,...,x}) is used as the input
for a linear SVM, which computes the output of the hidden layer. Note that
x} € RP i=1,...,n are the input observations after the RFF transformation.

SVM!' = w2} (X) + b = wih! +b; (2)

Where w; € RP and b; € R are the weight vector and the bias of the SVM in the
hidden layer. The dimension of the output of the hidden layer depends on the
problem. In a classification setting with P different classes, each observation has
as an output a vector of dimension P, so SVM! € R"*P_ Instead, in a regression
setting, each observation has a single value as output, being SVM' € R”. Next,
SVM! is used as the input of the output layer, the outcome M of the entire
ML-SVM. The output layer consists of a linear SVM. In a binary classification
problem where SVM' € R"*2| M = sgn(w3 SVM' + by), where wy € R? and
by € R are the weight vector and the bias of M € R".

2.1 General Case

The architecture introduced in the previous section can be expanded to an un-
limited number of hidden layers, an ML-SVM. The input of the first hidden layer
is X € R"*¢ where n is the number of observations and d the number of features
in the original feature space. The input of the hidden layer k is the outcome of
the previous layer, SVM*~!. In a classification problem, the input of the hidden
layer k is SVMF*™! € R"*F where P is the total number of classes. Instead,
the input of the hidden layer k in a regression problem is SVMF~1 ¢ R™ as in
Fig. 2. The k-th hidden layer follows the procedure:

Input Layer Hidden Layer Output Layer

ool E
olllc

M
X2 2

z1(X)) wih! + by ‘ ng??(W{SVM1 + bz]

SVM! M
xn xrr

X e R h'e R"*P SVM' e R "2 Me R”

Fig. 1: Single hidden layer ML-SVM for a binary classification task. The number
of observations is n, and the original feature space is d-dimensional. The number
of RFFs used to approximate the kernel function is D.

2 T
Bt = H(SVMET) = /5 [cos(wlTSVh/[’f—1 +by),...,cos(wWhSVMF ! 1 bp)

SVM" = wl'h* 4 b,

Input Layer Hidden Layers Output Layer

M
@ X1

M
@ xz

ZZ(SVM‘) - z* (SVM *"1)

21(X) sign (Wl SVM* + by,

HIL1 HLk

® M

XeR" McR"

Fig. 2: An ML-SVM with k hidden layers. Each hidden layer is represented as
HLi, i=1,...,k. Refer to Fig. 1 to see the content inside hidden layer boxes.

2.2 Training Algorithm

The training algorithm of the ML-SVM focuses on optimising linear SVMs in
the architecture. The training algorithm optimises the values of the Lagrange
multipliers «; and bias b; for each SVM; dual optimisation problem. It has as hy-
perparameters: k: Number of hidden layers, D;: Number of RFFs in layer ¢, and
o;: stdev of the distribution from which RFFs are sampled, where ¢ =1, ... k.
Note that the RFF weights {&; }%_, and biases {b;}}_, that were sampled during

the training stage must be stored. This is crucial to reproduce the transforma-
tions in which SVMs of each layer have been optimised —see Algorithm 1. The
overall time complexity of the training phase is O(k x n x D(D + n)), which
reduces to O(k x n? x D) when n > d.

Algorithm 1 Training Algorithm for an ML-SVM binary classifier

1: Input: Training data X = (xi,...,%,), where x; € R? labels y =
(Y1, - -+, yn), number of RFFs {D;}%_, and kernel parameter{c;}s_, for each
layer, number of layers k

: Output: Trained weights {w; 5:11’ biases {b; fill, RFF weights
{@!}2F ,_1, RFF biases {b/} 27 _ .

3: for j =1to k do

4: Sample &! ~ N(0,0,I) for i =1,...,D;

5: Sample b ~ U[0, 2x] fori =1,...,D;

6: if j =1 then

7

8

9

N

h/ = 29(X)
else
: h/ = 27 (SVM/ 1)

10: end if
11: Optimise the j-th linear SVM parameters w; and b; using (h7,y)
12: SVM’ = W]Thj + bj
13: end for
14: Optimise the final linear SVM parameters wy41 and by using (SVMk, y)

~jy D,k 21D,k
15: Return {Wj};?iia {b; }5211» {w }z':l,jzlv {bg}izl,jzl

3 Experimental Work

3.1 Testing large-scale capabilities

Among the many experiments performed to study the empirical behaviour of
the new proposal, due to space reasons, we show just some representative ones.
We use the Supersymmetry (SUSY) dataset [6] to evaluate the ability of the
ML-SVM to manage large datasets effectively. The task is to classify a signal
process as one that generates supersymmetric particles or a background process
that does not (5,000,000 observations, 18 features, 2 classes) — see Table 1. The
ML-SVM models train faster than the SVM with RBF kernel while generally
obtaining similar test accuracy when the number of observations is large (10°,
in this case). With an equivalent number of layers, ML-SVMs are also faster
than MLPs; with such large size, each method obtains very close results across
the 10 executions, causing no significant stdev (not shown).

Model Obs. | Train error | Test error Time (s)
ML-SVM 1 layer 10° 0.19 + 0.00 | 0.20 £ 0.00 53.78 + 4.64
ML-SVM 2 layers | 10° 0.20 £ 0.00 | 0.20 £ 0.00 66.95 £ 4.95
ML-SVM 3 layers | 10° 0.20 + 0.00 | 0.20 £ 0.00 78.18 + 6.47
MLP 1 layer 10° 0.19 £+ 0.00 | 0.20 £ 0.00 60.49 + 8.93
MLP 2 layers 10° 0.16 = 0.00 | 0.22 £ 0.00 191.54 £ 19.29
MLP 3 layers 10° 0.11 £+ 0.00 | 0.25 £ 0.00 291.72 £ 13.00
SVM-RBF 10° 0.20 £ 0.00 | 0.20 & 0.00 385.25 + 3.12
ML-SVM 1 layer 10° 0.20 £ 0.00 | 0.20 £ 0.00 | 981.53 £ 120.00
ML-SVM 2 layers | 10° 0.20 £ 0.00 | 0.20 £ 0.00 | 1089.28 £ 112.29
ML-SVM 3 layers | 10° 0.20 £ 0.00 | 0.20 £ 0.00 | 1179.36 £ 103.22
MLP 1 layer 10° 0.20 £ 0.00 | 0.20 £ 0.00 217.53 £ 57.19
MLP 2 layers 10° 0.19 £ 0.00 | 0.20 £ 0.00 | 974.18 £ 208.25
MLP 3 layers 10° 0.19 £ 0.00 | 0.20 &£ 0.00 | 2859.64 £+ 639.77
SVM-RBF 10° N/P N/P N/P

Table 1: Performance comparison of various models using 10° and 10 observa-
tions of the SUSY problem to train alongside CPU time in seconds; N/P stands
for “not possible” due to excessive sample size.

3.2 Testing Multi-Layer Efectiveness

In this experiment, ML-SVM models are trained on several classification datasets
[6], summarised in Table 2. In all datasets, adding layers ended up, at some point,
improving the accuracy of the model. A similar trend is observed in all cases,
where the test error gets reduced by adding layers. Often, the major increase
in accuracy is between the use of 1 and 2 hidden layers, but in some cases, the
ML-SVM still gets more accuracy while adding layers. All experiments were
conducted with results averaged over 10 training (90% of the data) and test
(10%) to provide mean values and stdevs.

Dataset N. of observations | N. of features | N. of classes
Magic 19,000 10 2
Cover Type (subset) 10,000 54 7
Spam Base 4,600 57 2
Breast Cancer 699 9 6
Tonosphere 351 34 2
E. Coli 336 7 8
Glass 214 9 7

Table 2: Summary of the dataset information. Datasets from [6].

In Table 3 we summarise the results obtained across all datasets.

For ev-

ery number of layers, results of the ML-SVMs are the best values among the
runs, all with the RBF kernel approximation; it should be mentioned that the

o and C' valueswere optimised for the first layer only. The MLP in our study is

constructed with three layers, each comprising 200 neurons.

Dataset SVM MLP ML-SVM W&S (3]
Glass 0.29+£0.30 | 0.18 £0.20 | 0.18+£0.01 | 0.26 £0.30
E. Coli 0.03+0.11 | 0.03+0.00 | 0.00+0.00 | 0.13+0.20
Breast Cancer 0.01 = 0.00 | 0.03 £0.00 | 0.008 £0.01 | 0.03 = 0.10
Tonosphere 0.11+0.00 | 0.06 £0.01 | 0.05+0.05 | 0.05=+0.10
Magic 0.16 £0.00 | 0.174+0.00 | 0.1540.00 —
Spam Base 0.31+0.00 | 0.08 £0.01 0.154+0.01 —
Cover Type (subset) | 0.31+0.00 | 0.28+0.00 | 0.21 +0.01 —

Table 3: Test error of several models in the datasets; — refers to tasks not studied
in the reference.

4 Conclusions

The exponential growth of data availability in recent years has introduced new
challenges for many learning algorithms. Traditional SVMs must often struggle
with complex, high-dimensional, large datasets, armed only with the choice of
an adequate kernel function. The ML-SVM proposed in this paper starts with
a single hidden layer configuration, where the input data is transformed before
being provided to a linear SVM. This process can be iteratively extended to
multiple hidden layers, total output being computed by another linear SVM.
Besides the weights and biases of the optimised linear SVMs, the algorithm stores
sampled RFF weights and biases to ensure reproducibility in transformations
during the evaluation phase. Our experiments reveal that adding layers to the
ML-SVM generally produces positive effects. However, the correlation between
adding layers and achieving higher test accuracy is not always met. For instance,
the optimal accuracy is achieved with an addition of two layers rather than
just one in some cases. Our future work is oriented to automatically adjust all
ML-SVM parameters to each specific task, bearing in mind a trade-off between
feasible computation time and needed complexity.

References

[1] Vladimir Naumovich Vapnik, Vlamimir Vapnik, et al. Statistical learning theory. Statistical
learning theory, 1998.

[2] You-xi Wu, Lei Guo, Yan Li, Xue-qin Shen, and Wei-li Yan. Multi-layer support vector
machine and its application. In 2006 International Conference on Machine Learning and
Cybernetics, pages 3627-3631. IEEE, 2006.

[3] Marco A Wiering and Lambert RB Schomaker. Multi-layer support vector machines.
Regularization, optimization, kernels, and support vector machines, pages 457-475, 2014.

[4] Siamak Mehrkanoon and Johan AK Suykens. Deep hybrid neural-kernel networks using
random fourier features. Neurocomputing, 298:46-54, 2018.

[5] Ali Rahimi and Benjamin Recht. Random features for large-scale kernel machines. Ad-
vances tn neural information processing systems, 20, 2007.

[6] Markelle Kelly, Rachel Longjohn, and Kolby Nottingham. The UCI ML repository, 2024.

