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Abstract. Machine Learning (ML) offers many opportunities, but its
reliance on personal data raises privacy concerns. One such example is the
Membership Inference Attack (MIA), which aims to determine whether a
specific data point was part of a model’s training dataset. In this paper, we
investigate this attack on Random Forests (RFs) and propose a method to
quantify their vulnerability to MIA. We also demonstrate that in collabo-
rative setups like federated learning, a client with access to the model and
partial training dataset can establish MIA against other clients’ training
data. The effectiveness of our method is validated through experiments.

1 Introduction

The remarkable capabilities of Machine Learning (ML) models come with signif-
icant privacy concerns, as they are often trained on extensive personal data [1,2].
One particularly concerning type of privacy is the Membership Inference Attack
(MIA) [3], which aims to determine whether a specific data sample was part of
a model’s training dataset. Such attacks pose a serious threat to individual pri-
vacy, potentially exposing sensitive information about users whose data was used
to train the model. As ML continues to permeate various aspects of our lives,
addressing these privacy challenges becomes paramount to maintaining public
trust and protecting individual rights in the age of data-driven decision-making.

These privacy concerns and MIA have garnered significant attention. Shadow
training was introduced in [3], a technique that creates a proxy for the tar-
get model’s behavior. This approach enables adversaries to train their attack
model without directly accessing the target Model’s training data. However, this
method requires knowledge of the training data distribution and the use of mul-
tiple shadow models. In [4], these assumptions of the shadow training technique
are relaxed and a MIA method using an unsupervised binary classification is pro-
posed. In [5] and [6], the relationship between overfitting and privacy leakage
is discussed. In [7], a new method for performing MIAs on ML models by ex-
ploiting differences in prediction sensitivities between training and non-training
data is proposed. More recently, in [8], an optimization-based reconstruction
attack is introduced that can nearly completely reconstruct the training dataset
of a Random Forest (RF) model, demonstrating a significant privacy vulnerabil-
ity in widely used ensemble methods. However, exact reconstruction using this
approach is generally possible only in datasets with binary features.
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This paper demonstrates that an adversary with access to an RF model and
partial training data can conduct MIA against the remaining training data. This
vulnerability is particularly relevant in collaborative machine learning scenarios,
such as federated learning, where multiple participants build a joint model using
their individual datasets. We show that a participant can potentially execute
MIA against other participants’ training datasets using its own data and the joint
model. Therefore, our proposed method determines whether a single sample
belongs to an RF model’s training set, requiring only access to the model and
a portion of the training data. At the same time, from a model provider’s
perspective, our method can evaluate and quantify the model’s vulnerability to
MIA against the protected portion of the training data. We detail our approach
in the next section.

2 Method

In this paper, we investigate the MIA attack on RF models. RF is an ensemble
learning method that constructs multiple decision trees for tasks like classifica-
tion and regression, with the final output determined by majority voting among
trees. To address the MIA problem, we investigate the margins of samples from
the decision boundaries in each tree.

Our approach systematically traces each sample through every tree in the
RF model. We begin by selecting numerical features and initializing their ranges
using global minimum and maximum values from the dataset. We update the
range for each feature by intersecting the conditions encountered in the nodes
along the sample’s path. Subsequently, we compute the intersection of these
defined ranges across all trees, establishing a final range for each feature per
sample. Figure 1 illustrates this process with a simplified example. The orange
part in Figure la represent the sample’s path through Tree 1 (T'1), with the
resulting feature ranges depicted by the orange area in Figure lc. Considering
an RF model with two trees, the green area in Figure lc represents the feature
ranges defined by the second tree, i.e., Tree 2 (T'2), for the same sample in Figure
1b. The intersection of these two trees’ ranges, shown as the 77 N 75 area in
Figure lc, represents the final feature range for the sample. f, and f, in Figure
1c are the global maximum values for f; and fs, respectively.

The final intersected range effectively delineates the decision boundaries for
each sample’s classification within the RF model. For each numerical feature,
we compute two critical distances: the absolute difference between the feature’s
actual value and both the lower and upper bounds of this final range. Formally,
for each numerical feature f of sample s, we calculate:

d! = min (|s" — rmin(f, 9)] . [s7 = rmax(f, 5)]) , Q)

df :maX(|5f_rmin(f>S) Sf_rmaX(f’s)D7

where s/ is the value of feature f for sample s, and 7, (f, 5) and 7,42 (f, 5) are
respectively the lower and upper bounds of the final range obtained for feature f
for sample s from all trees. In Figure 1lc, red and blue arrows within the 77 N'75
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Fig. 1: Ilustration of our proposed method using a simplified example

area indicate df and Ef for features f; and fo in the example, respectively.
Consequently, for a dataset with m numerical features, we generate a new feature
space of dimensionality 2 - m. We generate this new dataset by combining the
test set with an equally sized random subset of the training set. We assign a
binary target variable: 1 for samples originating from the training set and 0
for those from the test set. Subsequently, we employ this augmented dataset to
train a new ML model for membership inference, tasked with classifying samples
as either part of training or not. To clearly distinguish between the two models
discussed in this paper, we refer to the main RF model being analyzed as “Target
Model” and the ML model inferring data membership as “Inference Model”.

RFs adopt the bootstrapping technique to avoid overfitting, which may need
to be considered. Bootstrapping involves randomly sampling the original dataset
with replacement to create unique subsets for each decision tree, enhancing di-
versity and reducing overfitting. The size of these bootstrap samples can be
controlled. We explore the relationship between the Target Model’s bootstrap
sample size and Inference Model performance in Section 3.

3 Evaluation

3.1 Experiment Setup

To evaluate our proposed method, we employ the RF model developed by [9] for
predicting colorectal cancer survival as the Target Model. This model, trained
on a comprehensive dataset of 31,916 patient records from Hospital Based Can-
cer Registries of Sao Paulo, achieves approximately 77% accuracy in predicting
cancer-specific survival using 25 patient features. Among the 25 features, our
analysis focuses exclusively on numerical features: age, CONSDIAG (days be-
tween consultation and diagnosis), TRATCONS (days between consultation and
treatment), and DIAGTRAT (days between diagnosis and treatment), excluding
binary and categorical features. Twenty-five percent of the dataset is designated
as the test set, while the remaining portion is used for training the model.



3.2 Experiment Results

After training the main RF model, we will develop an Inference Model and
assess its accuracy in detecting training data. First, to ensure fair evaluation,
we randomly select an equal-sized subset from the larger training data to match
the test set size. By combining this subset with the test set, we create a balanced
dataset and apply our proposed algorithm to generate a new dataset with 2-m
features. Since the main data used to train the Target Model has 4 numerical
features, the new dataset will have 8 features and a binary label (1 for training
data, 0 for testing data). We then train the Inference Model on 70% of this new
dataset to classify training and testing instances, as outlined in Section 2 and
use the remaining 30% to test the inference model. We utilize an RF model with
100 trees as the Inference Model for this classification. We assess this model’s
accuracy in distinguishing training from testing data, comparing its performance
with and without bootstrapping in the Target Model’s training process.

Figure 2 illustrates the Inference
Model’s accuracy and standard deviation 0.75) —— Mean
under various bootstrapping conditions. Standard Deviation
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I
2
=

scenario 10 times, generating a new dataset 5 0.65
and training a new Inference Model each 3
. . . . Q
time. We examined six scenarios for the < ggo

Target Model: bootstrapping with max
samples of 20%, 40%, 60%, 80%, and 0.55
100%, and no bootstrapping (None) us-

ing the full dataset for each decision tree. O‘SOG\B RS RS
Results show that with bootstrapping, ac- O N
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used per tree grows. The highest accuracy Fig. 2: Inference Model’s Accuracy
(mean value around 75.2%) is achieved without bootstrapping, where each tree
accesses the entire dataset. This is because, by bootstrapping and using only a
subset of data in training the Target Model, a sample may not be used to train
a certain tree. Conversely, using more samples per tree is likely to produce more
accurate feature ranges. Hence, for our task of distinguishing training from test
data, larger subsets or using the entire dataset (no bootstrapping) in the Target
Model yield higher accuracy in the Inference Model.

Note that 100% bootstrapping is different from the scenario without boot-
strapping (None). In 100% bootstrapping, each tree is trained on a dataset of
the same size as the original but created by random sampling with replacement
from the original dataset, potentially including duplicate samples while omit-
ting others. In contrast, without bootstrapping, the entire original dataset is
used for each tree. This comprehensive use of data in the no-bootstrapping case
contributes to the higher accuracy of the Inference Model.

Figure 3 presents the confusion matrix of the Inference Model for the scenario
without bootstrapping, showing 75.5% accuracy with high true positive (86.2%)
and true negative rates (64.9%). Notably, the true positive rate exceeds the true



negative rate, indicating that the Inference Model
classifies training data better than test data. This
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Model without bootstrapping. To ensure a fair Fig. 3: Inference model’s
evaluation, we randomly select an equal-sized sub- confusion matrix

set from the larger training data to serve as our training set, matching the test
set size (7979 samples). Additionally, since our goal is to determine whether the
data has been used to train the model, we extract another equally sized subset
as a reference set from the remaining training data. In the collaborative/feder-
ated learning setting, for instance, this could be the data each client has locally
access to. For each sample in these three datasets, we measure d£ for all the
selected numerical features, meaning that for each sample, we will have four
different values. Then, for each sample, we calculate the geometric mean [10] of
these four values and call it D,. We generate Bycf, Birain, and Bies; sets, which
include Dy for all samples in the reference, training, and test datasets, respec-
tively. We calculate the geometric mean over all D, in each of these sets as B, 75
Birain, and Biegs;. Then, we normalize Byyqin and Byes; with respect to B,,ef

Btmm = BEf““" and Btest = % We consider two different scenarios: one with

ref ref

a constant tree number 100 and varying max depths: [5,10, 15,20, 30, 40, 50] for
the Target Model, and another with a constant max depth of 8 and varying tree
numbers: [10, 50, 100, 300, 500] for the Target Model. The results are compared
within each set of parameters.

Figure 4 illustrates the normalized geometric mean and standard deviation of
D, for both datasets. Figures 4a and 4b, respectively, demonstrate that increas-
ing the depth and number of trees in the Target Model enhances the distinction
between Btmm and Btf,gt This improvement occurs because we focus solely on
numerical features. With greater tree depth and more trees in the RF model,
these selected features are more likely to be used in defining tree node conditions.
Consequently, we obtain more accurate ranges for these features, potentially en-
hancing the distinction between Birain and Byes:. The normalization process,
using a randomly chosen reference subset from the training set (By.y), results
in Birain converging to 1, confirming that training and reference subsets share
similar characteristics, while the test dataset differs from them.

4 Conclusion

This paper proposes an approach to quantify RF models’ vulnerability to MIA.
We demonstrate that if an RF model and partial training data are public, the
adversary can leverage this to conduct MIA against the remaining data. Our
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Fig. 4: Normalized geometric mean and standard deviation of D

thod trains a new model to detect if a single sample was used in training the
get Model. We performed several experiments to validate the efficiency of our

approach, highlighting the potential security risks in RF models and emphasizing
the need for robust privacy measures, particularly in the context of federated

lea,

rning.
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