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Abstract. Reinforcement learning techniques can be used to learn effec-
tive policies for complex tasks, but they are rarely applied for control of
biogas plants. While control of the anaerobic process is necessary for opti-
mal plant operation, process complexity and instability prevent the usage
of advanced control mechanisms in industrial settings. In this study, a
proximal-policy optimization algorithm has been applied on the feeding
schedule of a lab-scale biogas reactor for biomethane conversion to electri-
cal energy depending on dynamic energy prices. The algorithm effectively
optimizes feeding and selling strategies, outperforming traditional meth-
ods.

1 Introduction

Agricultural biogas plants in Germany are generally used for base load power
supply, but their profitability without state subsidies is uncertain, and the
need for demand-oriented electricity requires more advanced control techniques.
Within biogas plants, organic material is converted into biogas through the
Anaerobic Digestion (AD) process. The produced biogas can subsequently be
converted into electricity, which is fed into the power grid. Generally, the feeding
pattern of biogas plants can be altered to provide demand-oriented power at high
electricity prices [1]. However, due to highly dynamic process operation, stabil-
ity concerns of the AD process arise. Machine Learning (ML) techniques are
being applied for process simulations [2], yet their application in control systems
remains limited. Reinforcement Learning (RL) algorithms could be able to effec-
tively control biogas reactors for on-demand energy production, but the research
in this topic is limited [3]. This study demonstrates the application of the Prox-
imal Policy Optimisation (PPO) algorithm to a laboratory-scale biogas plant
for increased profitability. The agent is initially trained on the semi-mechanistic
ADM1-R3 model [4], and then tested in laboratory scale in two configurations for
four weeks. The models were extensively trained to ensure policy stability and
convergence. Additionally, a third configuration is introduced to better mimic
industrial conditions. The applied PPO optimizes the feeding schedule and the
timing of electricity provision.



2 Materials and methods

Within the developed framework, the agent is first recurrently trained on the
ADM1-R3 model, receiving the biogas production data resulting from the RL
agent. In a second step, the combinations of actions resulting in the highest
reward are extracted, and in a third step they are applied to a lab-scale reactor.
In a fourth step, theoretical revenue from the sales of the gas is calculated, and
in the fifth and last step all the required data is presented to the agent for further
training. A schematic representation of this process is presented in Figure 1.
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Fig. 1: Control System

2.1 Data availability

The ADMI1-R3 model, applied in the first step of the control process, is a sim-
plified version of the ADMI1 model, a semi-mechanistic model that describes the
AD process [5]. This simplification enables faster simulation times.

2.1.1 Ezperimental setting

The actions set by the RL agent are applied by the laboratory personnel in a
12 1 continuous stirred-tank AD reactor equipped with biomethane production
sensors. The substrate mix includes corn silage and cow manure with 0.19 g
gl TS and 0.9 g g! VS. The biomethane produced from the reactor is then
applied in the RL environment as a 1 h resolution time serie. For comparison
purposes, a parallel reactor is operated in a naive Scenario, with fixed feeding
time (8 AM) and amounts (4.5 kg VS m™ per day) and constant conversion of
biogas and sales of electricity.

2.2 Control Mechanism

For the establishment of a control mechanism, a RL algorithm - a constrained
PPO - was developed. Within the PPO framework, an agent takes actions to
maximize cumulative rewards L(#), as parameterized by policy my. Moreover, a



clip function on r¢(#) is applied to retain the policy update within a conservative
range and avoid destabilizations to the learning process. The overall goal of the
agent is to maximize the cumulative reward by interacting with the environment
through a parameterized policy [6].

2.3 Environment configurations

Three environment configurations with increasing potential for application in
full-scale biogas reactors were tested. The configurations with their characteris-
tics and performances are displayed in Table 1. In all environments, the agent
can feed the reactor seven times a week, while the limitations of the selling
actions differ depending on the environment. A 1-week actions set consists of
seven floats for feed quantity, feed timing and daily selling patterns per week.
The agent is limited in the feed amount - an average of 4.5 kg VS m™ per week,
7 kg VS m™ per day - and in the feeding time - from 8 AM to 3 PM during the
week and from 9 AM to 12 PM. Feeding time limitations are implemented for
allowing laboratory operations. Moreover, it is assumed that the spot market
electricity prices are known one week in advance. A schematic visualization of
the environment is presented in Fig 2.
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Fig. 2: RL Environment structure

The training process of the agent is divided in two phases. In the first phase,
the agent is rewarded with Rgqs, calculated as the sum of biomethane produced
in the present week. During the second phase, the agent is rewarded with Ry,
calculated as the revenue difference between the RL agent revenue and the naive
agent revenue.

2.3.1 Configuration A and Configuration B

Configurations A and B assume unlimited gas storage and motor power. Thus,
all gas generated is virtually stored, and once the agent defines a selling time, all
the available gas is converted instantly into electricity and sold to the market.
Within Configuration A, the agent performs 1 action per timestep, indicating



for the first 7 actions the feeding quantities and for actions from 7 to 14 the
feeding times. At each timestep, a reward R;,p,: of 1 is set until completion of
the first 14 actions. From the 15" action, R, is calculated only for the days of
the week where the selling patterns are defined. Instead, within Configuration
B, the agent performs 21 actions per timestep, not requiring the reward R;npu:-
The daily selling patterns are defined by remapping each agentas actions from
the 14th to the 21st into a list of 24 binary values, representing the operation
of the Combined Heat and Power (CHP) unit, which converts biomethane into
electricity.

2.3.2  Configuration C

In Configuration C, a gas storage and motor is simulated for realistic reproduc-
tion of industrial conditions. The dimensioning of the gas storage and the motor
are extracted from [7]. The gas exceeding the gas storage capacity is virtually
vented. An efficiency of 42% is considered for the CHP. The selling patterns are
defined as in Configurations A and B, but excluding the combinations where the
CHP gets activated more than three times a day, as in industrial scale biogas
reactors. Configuration C is the only one not yet applied in lab-scale.

3 Results and discussion

3.1 Simulation and training results

PPO’s Learning Rate (LR) and v were manually tuned - with the LR being
0.0007 and ~ being 0.99, while the remaining hyperparameters were left as stan-
dard settings. In Fig. 3 it is shown the reward progression for the three scenarios.
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Fig. 3: Average reward and steps per run in Phase 1



Configuration A showed minimal improvement after 2000 weeks, plateauing
around -10, whereas Configurations B and C steadily improved to positive re-
wards. Configuration C converges faster than Configuration B, probably due to
the lower amount of the available selling patterns in the latter configuration.

3.2 Lab-scale

control results

The applied scenarios in both lab-scale and simulative scenarios with resulting
revenue results are shown in Table 1.

Scenario Name 1 2 3 4 5
Configuration type A A B B C
Simulated scenario revenue increase 11,2%  5,79%  9,19%  9,02%  18,72%
Lab-scale scenario revenue increase  1,28%  1,74% 1,58%  7,72% -
Trained on simulated data Yes Yes Yes Yes Yes
Trained on one week lab-scale data No Yes No Yes No

Table 1: Summary of scenarios and configurations.

An overview of the revenue obtained in the different scenarios by the RL
agent and by the naive agent are shown in Fig. 4.
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The RL agent overperforms the naive agent over the applied scenarios, and
it is able to identify different selling patterns depending on the scenario, con-
firming the efficacy of the learned policies. Moreover, the impact of the selling
time - especially in Scenarios 3 and 4 - is lower than the impact of the feeding
process, since the agent sells electricity at a constant rate in several periods of
the week. In general, the RL agent adapts dynamically to price fluctuations,
potentially allowing demand-based control in real time. Although immediate
revenue improvements vary, the adaptability of the RL agent could offer long-
term advantages under changing market conditions.

4 Conclusion

A constrained PPO algorithm applied to biogas production and electricity gen-
eration was successfully tested and applied on a lab-scale reactor. Both applied
configurations demonstrated resiliency to real-data training, but the configura-
tions using multidimensional actions - Configurations B and C - shows potential
for long-term training and control on biogas reactors due to the more stable
training process. While the improvement in performances varied between 1.28%
and 7.72%, the more realistic the environment got, the higher the performances
were, with potential up to 18.72% based on more restrictive gas storage criteria.
To assess the efficacy of such methods in industrial applications, further research
should consider longer control operations in full-scale.
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