Generating Synthetic Spectral Data using
Conditional DDPM

Fabian Kubiczek, Stefan Patzke and Jorg Thiem

University of Applied Sciences and Arts Dortmund - Information Technology
Sonnenstr. 96, 44139 Dortmund - Germany

Abstract.

This study investigates the efficiency and effectiveness of Denoising Diffu-
sion Probabilistic Models (DDPM) for generating synthetic spectral data.
A modified DDPM was implemented and evaluated in comparison to a
previously established model. Both models were trained with and with-
out Classifier-Free Guidance (CFG). In addition, training duration and
sample generation are compared. The results demonstrate that the syn-
thetic spectral data exhibits a high degree of alignment with the training
data, with only minor deviations. Furthermore, the influence of CFG on
the generation process is evident. The findings indicate that the modified
DDPM performs better on the given data.

1 Introduction

Hyperspectral data has an impact on various fields such as hyperspectral re-
mote sensing and medicine. The current challenge is to acquire a large amount
of spectral data. This data is acquired using expensive imaging systems. To
reduce these costs, neural networks can be used to synthesise the data [II 2, [3].
For this purpose, two DDPMs are implemented and analysed. One is a modified
DDPM inspired by [4]. The second is the Biodiffusion-DDPM which is used in
[5]. The outcome of both DDPMs is evaluated and compared within this work.
This comparison also takes the training duration into account. The difference
in the results with the use of CFG is shown. In the next section, the method-
ology is described in detail, starting with the used dataset and the structure of
the used U-Net architecture. Furthermore, the diffusion process is defined and
the implementation of the DDPM is explained. Subsequently, the evaluation
methods are introduced. In the penultimate step, the results are presented. The
paper concludes with an outlook on future research perspectives and suggestions
for further improvement.

2 Methods

In this section, we present the utilized dataset, provide a detailed description
of the design and implementation of the U-Net architecture, define the diffusion
process and outline the evaluation methods employed.

Spatial information is not considered in this study. This allows the generated
spectra to be used for applications with a per-pixel basis, where individual data
points lack spatial context.



2.1 Dataset

For this work, the Indian Pines dataset is used as it is partially labeled and well
known. This data describes a landscape across Indiana, USA [6] and consists
of a hyperspectral image (HSI) of dimension 145x145x200, while the first two
dimensions contain spatial and the third spectral information, respectively. The
HSI thus contains 21025 (145x145) pixels, for each of which a spectrum is avail-
able. Those pixels are partially labeled into 16 classes. Detailed explanations of
this dataset can be found in [6]. To use the data, the HSI is reshaped into a 2D
array. In this 2D array, each row is a 200-dimensional vector representing the
spectrum of a single labeled pixel.

2.2 Design and implementation of U-Net architecture

input vector: output vector:
noised vector predicted noise for time t
Residual connections
| =) > = ‘ T
W gl 8 gl o PPl )
\ i ISAEN N o I ]
AL IR -~ el IRV N !
\ -l e i
(_Tme: ) & o [Tmewm )
(Conaitonatems ) @ (CononEReY
8 8
g 2 == DoubleConv
¥ Down: maxpooling1d,
e ° 2x DoubleConv
% . 4 Up: Upsample,
3 2 2x DoubleConv
¥ 4 O selfAttention
ol 8 & g‘ﬁ‘ = Conv
< I > .f:I ﬁl » o I = copy and crop
o~ w ] o~

Figure 1: Structure of the U-Net architecture

The architecture of the DDPM U-Net inspired by [4] is shown in Itisa
symmetrical structure with two primary paths, which are referred to as encoder
and decoder. In the encoder, the input vector is reduced to the dimensions 256 x
25 by downscaling after a convolution DoubleConv. This is realised with a total
of three Down and SelfAttention blocks. This is followed by a sequence of three
DoubleConv blocks in the lower part of the U-net. Three Up and SelfAttention
blocks follow in the decoder path. The output is adapted to the size of the input
with a final Convid. A one-dimensional noisy vector, the timestep ¢ and the
labels (used as conditional embeddings) serve as inputs to the network. In each
layer, the timestep ¢ and the conditional embedding are combined and fed into
the network. The network’s output is the predicted noise, which is then used to
compute the data at the previous timestep t-1.



2.3 Definition of the diffusion process

A DDPM is a parameterized Markov chain designed to generate data samples
that closely resemble the training data after a specified number of steps. The
process of diffusion is reversed and starts by gradually adding noise to the data
in small increments until the original signal is entirely obscured. The model then
learns to reverse this process step by step, gradually restoring the original data

.

Backward diffusion

@ @ Po(X¢-1]|x¢, €©)

AL q(x¢|x¢-q,€)
Forward diffusion

Figure 2: Visualisation of the diffusion process

The diffusion process is shown in where q(z:|z:—1,¢) represents the
forward diffusion and po(x;—1|Z:,¢) the backward diffusion, respectively. At
time T, noise was added to the vector T times. The vector xy represents the
original data, which in this case refers to a spectrum.

The forward and backward diffusion process is defined according to [7]. An
extension is added to the process to enable conditional data generation. By this,
besides the data zy, a number of conditions ¢ can be incorporated. The condi-
tions can be additional information or restrictions that influence the generation
process. In this case, the labels of the dataset are transferred as ¢ [5]. This
approach permits the generation of samples pertaining to a particular class.

po(xi—1|xe,¢) = N (215 po(®, t,¢), Bo (2, 1,¢)) (1)

represents the backward diffusion process. Here, the label informa-
tion is transferred with ¢. The label information is combined with . The training
and sampling algorithms are implemented according to [7]. To calculate the loss,
the gradient between the added and predicted noise is calculated. The model is
also trained on a partial 10% of the dataset using CFG to generate generalized
spectral representations. The learned unconditioned model is then utilised in the
sample process, with the unconditioned predicted noise being interpolated with
the conditioned model prediction. This enables a trade-off to be made between
quality and diversity [8]. The definition of the diffusion process differs from that
of the Biodiffusion-DDPM. The process relies on a prior variance schedule and
includes a model output. The loss also uses the Kullback-Leibler divergence
and optimises the evidence lower bound (ELBO). In addition, the 8 schedule
is non-linear. These aspects are further described in [5]. The modified DDPM
uses a fixed variance for the backward diffusion process, a simple loss function
and a linear /8 schedule (see [7]).



3 Results

3.1 Training and sample duration

Table 1: Training (seconds per epoch) & sample duration (seconds per sample)

model training duration (s/ep) sample duration (s/sample)
DDPM CFG 27.462 16.852
DDPM 13.206 7.252
BIO-DDPM CFG 8.345 42.156
BIO-DDPM 8.095 21.23

The time required for training and sampling is displayed in It can
be seen that the modified DDPM performs best during sampling. In comparison
with the Biodiffusion-DDPM, the time required is two to three times less. With-
out CFG, the required sampling time is lower by a factor of 2 for both models.
The Biodiffusion-DDPM, on the other hand, can be trained more quickly. The
training time for the DDPM without CFG is reduced by a factor of 2.

3.2 Comparison of training and sample data

The training data is compared to the sample data. This is done for both, the
modified DDPM and the Biodiffusion-DDPM, each with and without CFG. The
following figure shows the mean values and standard deviations of 200 samples
and the training data. For the sake of clarity, not all labels are shown in the
figures. The figures show the values for three most interesting labels (2, 11 and
14).

show the results of both DDPMs, respectively. The detailed analysis
of the results for labels 2, 11, 14 is carried out because these labels best represent
the variation within the dataset. Slighter deviations can be observed for labels
2 and 11 and larger deviations for label 14. These larger deviations are visible
for the Biodiffusion-DDPM (CFG) with a high Mean Squared Error (MSE) of
0.015, in comparison to the modified DDPM (without CFG), which exhibits an
MSE of 0.0005. The standard deviation is marginally higher for the modified
DDPM. Overall, the mean values deviate more with the use of CFG, particularly
for the Biodiffusion-DDPM. The deviations are particularly visible in the first
100 (modified DDPM) or 150 (Biodiffusion-DDPM) spectral bands.



label: 2, train data: 1142 label: 2, train data: 1142

0.75 1
0.6 A
0.50 A
& 0.4 &
(9] [}
£ € 0.25
0.2 A
0.0 - ' ' : 0.00 ' ' '
o] 50 100 150 200 0 50 100 150 200
label: 11, train data: 1964 label: 11, train data: 1964
0.6 -
S £ 0.4
(7] ()
1S 1S 0.2 1
0.0 -
0 50 100 150 200 0 50 100 150 200
label: 14, train data: 1012 label: 14, train data: 1012
c c
© @©
() (]
£ £

0 50 100 150 200 0 50 100 150 200
(a) CFG (b) no CFG
—— train data —— Bio-DDPM sample data —— DDPM sample data
std train data Bio-DDPM std sample data DDPM std sample data

Figure 3: Comparison of training data mean and sample data mean for both
DDPMs, each with and without CFG. The training data is shown in green, the
Biodiffusion-DDPM sample in red and the modified DDPM sample in blue.

3.3 Metrics

Table 2: Comparison of average metrics between training data and sample data
generated by all DDPM variations: Mean Squared Error (MSE), Difference in
Standard Deviation (Ac), Sum of Squared Deviation (SSD), Wavelet Coherence
(WC) and Correlation Coefficient (R). The best values are marked in green and
the worst values in red, respectively.

model MSE Ao WC SSD R,y
DDPM CFG 0.001713 0.013188 0.964 0.342 0.994
DDPM 0.000588 0.010516 0.967 0.118 0.994

BIO-DDPM CFG 0.008056 0.029566 0.816 1.611 0.961
BIO-DDPM 0.001931 0.007251 0.822 0.386 0.969




The metrical results are presented in[Table 2] A comparison of the average metric
values shows that the DDPM without CFG performs best and the Biodiffusion-
DDPM with CFG performs worst.

4 Conclusion

Overall, the modified DDPM delivers better sample results with a shorter sample
duration while the Biodiffusion-DDPM performs better in terms of the training
duration. To improve the training duration on the modified DDPM, the SelfAt-
tention could be replaced by LinearAttention or MultiQueryAttention [5, @, [10].
This approach can be applied wherever the augmentation of spectral data is re-
quired, e.g. spectral unmixing or HSI classification purposes, particularly bene-
fiting from the advantage that no spatial information is required.

References
[1] Liguo Wang and Chunhui Zhao. Hyperspectral Image Processing. Springer Berlin Heidel-
berg and Imprint and Springer, Berlin, Heidelberg, 2016.

[2] Pablo Ribalta Lorenzo, Lukasz Tulczyjew, Michal Marcinkiewicz, and Jakub Nalepa.
Hyperspectral band selection using attention-based convolutional neural networks. IEEE
Access, 8:42384-42403, 2020.

[3] Matthis Hofmann, Dominik Fromme, Tim Streckert, and Jérg Thiem. Synthetic image
generation of aortic valves using conditional ddpm. ICBRA, 11:42384-42403, 2025.

[4] Dominic Rampas. dome272/Diffusion-Models-pytorch: Pytorch implementation of Diffu-
sion Models (https://arxiv.org/pdf/2006.11239.pdf), 2024.

[5] Xiaomin Li, Mykhailo Sakevych, Gentry Atkinson, and Vangelis Metsis. Biodiffusion: A
versatile diffusion model for biomedical signal synthesis, 2024.

[6] Hyperspectral remote sensing scenes - grupo de inteligencia computacional (gic), 2023.

[7] Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising Diffusion Probabilistic Models,
2020.

[8] Jonathan Ho and Tim Salimans. Classifier-Free Diffusion Guidance, 2022.

[9] Angelos Katharopoulos, Apoorv Vyas, Nikolaos Pappas, and Frangois Fleuret. Trans-
formers are RNNs: Fast Autoregressive Transformers with Linear Attention.

[10] Noam Shazeer. Fast transformer decoding: One write-head is all you need.



	Introduction
	Methods
	Dataset
	Design and implementation of U-Net architecture
	Definition of the diffusion process

	Results
	Training and sample duration
	Comparison of training and sample data
	Metrics

	Conclusion

