JEPA for RL: Investigating Joint-Embedding
Predictive Architectures for Reinforcement
Learning

Tristan Kenneweg!, Philip Kenneweg' and Barbara Hammer* *

1- University of Bielefeld - Technical Faculty
Universitaetsstrasse 25, 33615 Bielefeld - Germany

Abstract. Joint-Embedding Predictive Architectures (JEPA) have re-
cently become popular as promising architectures for self-supervised learn-
ing. Vision transformers have been trained using JEPA to produce embed-
dings from images and videos, which have been shown to be highly suitable
for downstream tasks like classification and segmentation. In this paper,
we show how to adapt the JEPA architecture to reinforcement learning
from images. We discuss model collapse, show how to prevent it, and
provide exemplary data on the classical Cart Pole task.

1 Introduction

Reinforcement learning from images is often a slow and compute-intensive pro-
cess since an image is a very high-dimensional state description [1]. The actual
information needed from a state is often much lower-dimensional. In the classic
Cart Pole task [2], the image state at typical resolution has d;,,g = 400x600x3 =
720,000 dimensions. But the actual state as given by the simulation only con-
sists of cart position, angle, velocity and angular velocity, resulting in ds = 4
dimension.

Consequently, it is desirable to learn a low-dimensional representation from
images on which reinforcement learning can take place [3]. This representation
has to capture all necessary information to master a given task. Towards this
end, many techniques have been developed; one of the most famous is to use a
variational autoencoder [4].

In an autoencoder setup an image is fed to a network with a bottleneck
in the middle that contains a very limited number of n, neurons. The net-
work is trained with a reconstruction loss between original and predicted pixel
values. For images that have a large amount of repetitive structure in them,
this approach works exceedingly well [5]. However, autoencoders have a key
limitation in that they assign equal value to every pixel. In the Cart Pole
example, that means that a white background pixel is equally important as
a pixel of the pole, although the latter provides more relevant information.
This can lead to results in which the relevant moving parts of the images are
blurry and difficult to recognize while the background is perfectly crisp [6].

*Acknowledgments. The authors were supported by SAIL. SAIL is funded by the Ministry
of Culture and Science of the State of North Rhine-Westphalia under the grant no NW21-059A.

To overcome this limitation, Yann

LeCun [7] proposed the Joint- Embeddlng@ m & ;

Predictive Architecture (JEPA) as H 8y
seen in Figure 1. In JEPA, separate

context and target encoder networks [xeeneoder J [e }
encode information that is spatially or H H
temporally close, for example, differ- @ @

ent patches in an image or different

frames in a video. A shallow predictor

network predicts the target er.1c0ding Fig. 1: Overview of JEPA as proposed
from the context encoding, given an by Yann LeCun.

additional latent variable z. This ar-

chitecture has the advantage that it is trained entirely by reconstruction error in
latent space and can thus choose to create embeddings that ignore irrelevant de-
tails in an image. The downside is that it is much more prone to collapse, since
a constant output of the context and target encoders, along with a predictor
that performs an identity operation, will result in a minimal loss.

In this paper, we show how to adapt JEPA to reinforcement learning prob-
lems that can be described with a low-dimensional state. By this, we refer to
problems like Atari games, where each state can be described with a single vector
that typically has fewer than 100 entries. Our main contributions are:

e We explain in detail how to use a vision transformer in tandem with JEPA
to learn embeddings which can be used for successful reinforcement learn-
ing.

e We discuss possible model collapse scenarios and show how to avoid them.

e We show exemplary data using the classical Cart Pole task.

2 Methods

CL(St, St—{-l) —_ 85 = P(w,sx,a)]

=, [

sy =V (0,2) ’
/4

xT
E

t—2||t—1 t t—1 t t+1

8

Fig. 2: Overview of our JEPA pipeline as adapted to reinforcement learning.
We feed all patch embedding of frames f;_5 to f; into the x-encoder V (8,).

In this Section, we explain in detail how we adapted JEPA to reinforcement
learning problems. We focus on reinforcement learning tasks that provide image
input and no further state information. Our reinforcement learning networks
(usually actor and critic) solely rely on the produced embeddings. See Figure 2
for an overview of our architecture.

Input and Encoder

Since our agent relies solely on x-encoder embeddings, these must encapsulate
all task-relevant information, including temporal context. Therefore, we encode
the last three frames x = f;_o, fi—1, fi of a given simulation. For the x-encoder,
we choose a vision transformer V' (6, x). In each forward pass we feed the patch
embeddings of all images to the transformer and add a positional encoding that
encodes not only the ¢, 7 patch coordinates in the images but also the t coordi-
nate, which indicates from which frame a given patch is taken.

For our target y value, we choose the frames y = fi_1, fi, fr+1. We do
this because we want to force the embeddings of x to encode all the information
necessary to easily predict the embedding of the next frame. We choose to encode
fi—1, [+, and fiy1 instead of just fi11 because we use the same architecture for
our y-encoder. We set the weights of our y-encoder 6 to a running average of the
x-encoder weights: 6;,1 = 0.99 - 6; + 0.01 - 6,1 This approach has been shown
to prevent collapse in previous work [8]. We initialize both networks with the
same values. We do not pass gradient updates through the y-encoder.

Predictor

We choose a shallow two-layer MLP as our predictor. We keep our predictor
intentionally small so that the task of state prediction is solved in the embedding
stage and not by the predictor. To have all the necessary information to make a
prediction, the predictor needs to be fed the action taken by the actor to get from
state s; to state s;41. We project the one-hot encoded action to the dimension
of the hidden layer using a linear layer and add it to the embedding after the
first layer.

Learning Objective

There are many valid choices for the learning objective. A straightforward one,
similar versions of which have shown success on downstream tasks in other work
[9], is to take the last-layer embeddings of all patches from the x-encoder vi-
sion transformer and feed those to the predictor. This would result in a very
high-dimensional representation s, and thus require significant computational
resources and data. While this objective is potentially very powerful when used
on complex scenarios with massive computational resources, it is not ideal when
learning Atari games or similar tasks, since the relevant information can be
contained in a much smaller representation.

Instead, we choose to prepend the equivalent to a learnable classification to-
ken to the x-encoder vision transformer. We only feed the last-layer embed-
dings of this classification token to the predictor. Thus, the dimension
of s, is only the embedding dimension den,. For our experiments, we choose
demp = 64. Since we know that the state of the Cart Pole game can be repre-

sented using a four-dimensional vector, this is sufficient. The same is true for all
learnable tasks for which a short state description can be created.

Our JEPA loss is the Euclidean distance between the predictor output s}
and the y-encoder output s,:

Lygea = |8} = s, ()

Collapse Prevention
As mentioned in the introduction, JEPA is prone to collapse. A constant output
of the x-encoder and y-encoder, along with an identity operation of the predictor,
will result in a perfect loss. An indicator of collapse that we can observe is the
mean batch-wise variance of the embeddings s,, which drops to values below
10~7 in a collapse scenario. To counteract this, we have two methods available:

We can propagate the actor and critic losses. Since we feed s, into the actor
and critic network, we can propagate the losses through our x-encoder. Thus, we
give the encoder network an incentive to learn informative representations s,.
We do not define specific actor and critic losses, since these can be arbitrarily
chosen.

Furthermore, we can add a more direct regularization loss to prevent collapse.
We do this by encouraging batch-wise variance:

demb
1
Liee = —mi 1, — V. 2) 2
; mm< o 2 v L) o)

We clamp this loss to 1 since variance is an unbounded metric. Here, s, refers to
a tensor that contains a batch dimension, and dg, is the embedding dimension.
Encouraging variance in embeddings has been shown to be effective in preventing
collapse in self-supervised learning [10].

Gradient Propagation

The x-encoder can be purely trained from the loss described in Equation 1.
However, in practice, it is more effective to back-propagate the actor and critic
losses through the x-encoder vision transformer. Thus, the total loss is given by

L= LJEPA + Lactor + Lcritic + chg (3)

where L,g, as described in Section 2, can be added if model collapse is a problem.

3 Results

We test our framework on the Cart Pole reinforcement learning task using pixel
observations and an actor-critic-style PPO algorithm. To evaluate different con-
figurations, we vary three conditions: Including or excluding the JEPA loss
(denoted by J or .J), deciding whether reinforcement learning gradients are back
propagated to the image encoder (denoted by V or V), and applying or omit-
ting the regularization loss from Equation 2 (denoted by R or }AB) We test 4
configurations:

Average Episodic Return

—— J.V,R E—— j.V,R [— ‘]‘@’R — J’@_R

Fig. 3: Average episodic return over the first 100k environment steps for all four
configurations. Each graph shows the accumulated results of 5 runs.

1. J ,V, R: This is our baseline test in which we omit the JEPA loss and train
the encoder purely from the gradients of the actor and critic networks.

2. J,V,R: The encoder is trained using both JEPA loss and gradients from
the actor and critic.

3. J, @, R: JEPA loss without actor-critic gradient propagation. The actor
and critic are still trained using PPO, but we stop the gradient flow when
feeding the embeddings to them, so the encoder is trained only via the
JEPA loss.

4. J, @7 R: JEPA loss with regularization loss, without actor-critic gradient
propagation. We add the regularization loss described in Equation 2 to
prevent collapse.

Figure 3 shows the running average of the episodic return over the first 100k
environment steps. Each graph shows the accumulated results of 5 runs. In Cart
Pole, one reward is given per frame when the pole is upright.

J,V, R: We observe that the agent learns some advantageous behavior, albeit
in a limited fashion, even though we omit the JEPA loss. This is reasonable
since we still update the x-encoder via the PPO-style actor and critic losses.
The embedding variance is in a reasonable range between 0 and 1.

J,V,R: When combining JEPA and reinforcement learning losses, we get
the best results. The reward increases much faster and does not plateau. We
also observe reasonable embedding variances.

J, @, R: When stopping the gradients of the actor and critic from back prop-
agating through the JEPA encoder, we observe a model collapse. The encoder

maps all inputs to the same embedding, which leads to an ever-decreasing batch-
wise variance and a low JEPA loss (not shown here). Since the embeddings do
not contain any information, the actor cannot learn anything, and the episodic
return never increases. In some cases the embeddings recover from this collapse
state when training is continued for longer.

J, @, R: When the regularization loss, as described in Equation 2, is added,
model collapse is prevented, as shown by the batch-wise variance. The actor
can learn from the information contained in the embedding, although much
slower as with actor and critic gradients. This shows that JEPA is able to
learn informative state representations without gradient propagation from the
reinforcement learning task.

We conclude that JEPA can successfully produce embeddings for reinforce-
ment learning from image tasks, especially when the encoder is trained with a
combination of JEPA and reinforcement learning gradients.

4 Conclusion

In this paper, we presented a method to adapt the Joint-Embedding Predic-
tive Architecture to reinforcement learning from images. We showed how to
construct encoder and target-encoder inputs for vision transformers that cap-
ture spatio-temporal information using embeddings of appropriate dimensional-
ity. We investigated model collapse and demonstrated how to prevent it using
backpropagation of reinforcement learning gradients. Overall, we conclude that
JEPAs are promising candidates for reinforcement learning and encourage fur-
ther work in this direction.

References

[1] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, et al. Human-level control through
deep reinforcement learning. Nature, 518(7540):529-533, 2015.

[2] Mark Towers and et al. Gymnasium: A standard interface for reinforcement learning
environments. arXiw preprint arXiv:2407.17032, 2024.

[3] Aravind Srinivas, Michael Laskin, and Pieter Abbeel. Curl: Contrastive unsupervised
representations for reinforcement learning, 2020.

[4] Diederik P Kingma and Max Welling. Auto-encoding variational bayes. Proceedings of
the 2nd International Conference on Learning Representations (ICLR), 2014.

[5] David Ha and Jiirgen Schmidhuber. World models. Neural Information Processing Sys-
tems (NeurIPS), 2018.

[6] Christopher P. Burgess, Irina Higgins, Arka Pal, Loic Matthey, Nick Watters, Guillaume
Desjardins, and Alexander Lerchner. Understanding disentangling in S-VAE. 4 2018.

[7] Yann LeCun. A path towards autonomous machine intelligence. arXiv preprint
arXiw:2205.12868, 2022.

[8] Jean-Bastien Grill, Florian Strub, Florent Altché, Corentin Tallec, Pierre Richemond,
Elena Buchatskaya, Carl Doersch, Bernardo Avila Pires, Zhaohan Guo, Mohammad
Gheshlaghi Azar, et al. Bootstrap your own latent-a new approach to self-supervised
learning. Advances in neural information processing systems, 33:21271-21284, 2020.

[9] Mahmoud Assran, Quentin Duval, Ishan Misra, Piotr Bojanowski, Pascal Vincent,
Michael Rabbat, Yann LeCun, and Nicolas Ballas. Self-supervised learning from im-
ages with a joint-embedding predictive architecture. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, pages 15619-15629, 2023.

[10] Adrien Bardes, Jean Ponce, and Yann LeCun. Vicreg: Variance-invariance-covariance
regularization for self-supervised learning. CoRR, abs/2105.04906, 2021.

