Data-Density guided Reinforcement Learning
Leon Lantz!'", Maximilian Schieder’" and Michel Tokic®?*

1 - LMU Munich - Department of Computer Science
Geschwister-Scholl Platz 1, 80539 Munich - Germany

2 - Siemens AG - Foundational Technologies
Otto-Hahn-Ring 6, 81379 Munich - Germany

1 - Contributed Equally

Abstract. This paper investigates reinforcement learning by avoiding
low-density state regions using modified reward functions. The approach
leverages data-density models within the state space, enabling a custom
reward function that penalizes transitions into sparse regions. Applied in
the Pendulum environment, this method encourages exploration in well-
sampled areas while avoiding less-explored states. Empirical results show
that this method effectively balances reward optimization with state con-
fidence, enabling robust policy learning in challenging environments.

1 Introduction

Reinforcement learning (RL) is a widely used framework for optimizing the
behavior of agents interacting with dynamic environments [7]. By iteratively
interacting with their surroundings, agents learn an optimal policy based on
feedback in the form of a numerical reward signal. A key distinction in RL lies
between model-free and model-based approaches. Model-free RL relies on ex-
tensive real-world interactions to improve policies, while model-based RL uses
predictive models of the environment to reduce the need for direct interactions.
This makes model-based RL particularly beneficial in scenarios where real-world
interaction is expensive or risky.

This paper addresses scenarios in which the agent must avoid states with low
data density, i.e., states with sparse prior experience, leading to uncertainty in
the predicted outcomes of the agent’s actions. This is critical in applications
such as heavy machinery, where operating in poorly understood configurations
could result in significant risks or damage. Ensuring that the agent avoids such
states, regardless of their associated rewards, is essential for safety and reliability.
Typical offline RL approaches, such as Neural Fitted Q Iteration [5] or Deep Q-
Learning [4], rely solely on samples for iteratively identifying the underlying
Q-function. Through incorporating models instead, an agent can also explore
states that were not present in the samples.

As investigated in this paper, the inclusion of a data-density model allows the
agent to also account for the training dataset distribution when learning policies,
with the goal of discouraging exploration in regions with low data density. This
allows the agent to learn a policy that optimizes the original objective and avoids

*This contribution was supported with funds from the German Federal Ministry of Educa-
tion and Research under project number 011S24087A.

regions of high uncertainty. A well-established alternative would be integrating
limits of authorities into policy training, which would require additional expert
knowledge. Through experiments, we demonstrate that data-density based RL
can balance reward optimization and state confidence, enabling robust policy
learning in complex environments.

2 Methodology

illustrates the general architecture of our proposed methodology. In
the following paragraphs, we provide a detailed description of each component
in our model-based RL framework. One key component is the integration of the
data-density model into the approach.

action

| |

Agent i Environment |« executable in environment

T

Policy 1T
L y

A

generates

state Model-based RL
reward action

Simulated environment

State-Transition predicts i Agent
i b

L---)» reward
Data-Density .
influences
model

Fig. 1: Architecture of the proposed density-guided model-based RL approach.

U1

—
—

We evaluate our approach using the Gymnasium Pendulunﬂ environment [g].
Generally, a key requirement for environments suited to density-based policy
learning is the presence of multiple viable paths to an optimal state. In the
Pendulum environment, this requirement is exemplified by its ability to swing
up in both a leftward and rightward direction.

Data Sampling - As illustrated in data plays a crucial role in
enabling model-based RL, serving as the foundation for both the state-transition
model and the data-density model. Such data is typically collected in the form
of process data from industrial plants.

To evaluate the effects of sparse data on policy learning, an artificial low-
density region is created in the state space of the Pendulum environment. Specif-

Thttps://github.com/Farama-Foundation/Gymnasium/blob/main/gymnasium/envs/
classic_control/pendulum.py (Accessed: 2024-11-27)

https://github.com/Farama-Foundation/Gymnasium/blob/main/gymnasium/envs/classic_control/pendulum.py
https://github.com/Farama-Foundation/Gymnasium/blob/main/gymnasium/envs/classic_control/pendulum.py

ically, state samples within the angle range [+27/5, 437 /5] are excluded, rep-
resenting an area where the agent’s behavior remains uncertain. This range
is chosen based on the pendulum’s geometry to simulate conditions commonly
arising due to limited exploration or environmental constraints. An episode is
terminated once the agent enters a low-density region, ensuring that no experi-
ence is gathered in these areas. A total of 2000 episodes with a maximum of 200
steps per episode are simulated, using random actions to broadly cover the state
space. This resulted in an overall dataset of 155.000 transitions. The collected
data is split into training (70%) and validation (30%) sets.

State-Transition Model - The state-transition model represented in
predicts the next state based on the current state and action, forming the
core of any model-based RL framework. However, learning an accurate state-
transition model is particularly challenging in scenarios where regions of the
state space have sparse data coverage. In such cases, certain adaptations may
be required, such as incorporating prior knowledge through physics-informed
neural networks [6] or augmenting the training data with simulations. While
these techniques can improve model accuracy, they also introduce additional
complexities and uncertainties, particularly when simulated data deviates from
real-world dynamics.

This paper focuses on using a data-driven approach for the state-transition
model, trained exclusively on the available offline dataset. To predict state tran-
sitions, a Long Short-Term Memory (LSTM) [3] model is employed, leveraging
its ability to capture temporal dependencies. Input sequences are created us-
ing a sliding-window approach, where four consecutive states and their actions
serve as inputs, and the subsequent state is the prediction target. The LSTM
architecture consists of 50 units followed by a dense layer. Training is performed
using the Adam optimizer for up to 2500 epochs, with early stopping based on
validation loss.

Data-Density Model - A central aspect of this work is leveraging data-
density models to guide policy learning by distinguishing well-explored from
less-explored regions of the state space, where behavior remains uncertain. These
models approximate the underlying data distribution within the state space of
the environment.

In our experiments, we evaluate Kernel Density Estimation (KDE) to model
data density [I]. The KDE model utilizes the positional encoding of the pen-
dulum’s state. The bandwidth parameter, which controls the smoothness of the
density estimate, is set to 0.1 based on cross-validation and visual control, bal-
ancing overfitting and underfitting. This density model is later integrated into
the reward functions to penalize low-density states. While KDE is utilized here,
the method is adaptable to alternative data-density estimation techniques.

Simulated Environment - A simulation of the actual environment is de-
signed to facilitate model-based RL. In our experiments, this is based on a

Gymnasium environment, which incorporates the state-transition model into
its step()-function. In contrast to the original Pendulum environment, which
calculates states through physical equations using 6 (angular position) and 6
(angular velocity), the custom environment predicts future states utilizing the
state-transition model instead.

The environment supports multiple reward functions. The standard reward
function serves as a baseline, while modified reward functions incorporate penal-
ties for low-density states. Different penalty factors and thresholds are evaluated
to assess their impact on policy training. Particularly, we modified the Pendu-
lum’s reward function with an additional penalty term p:

reward = — 6%+ 0.1-6? +0.001 - torque? | — P
~~ ~—— | ——— ~—~
angle term angular velocity term torque term penalty term

original reward function

From the given reward function, the minimum possible reward within the
bounds of the Pendulum environment can be derived. Considering the angle
term 6% < 72, the angular velocity term 0.1 - 62 < 0.1-82, and the torque term
0.001 - torque? < 0.001-22, the overall minimal reward per step is approximately
—16.27. This value is critical for balancing penalty and reward.

The reset ()-function is also adapted to support flexible initialization of
starting states. By default, starting states are randomly sampled from the unit
circle, with angular velocities constrained to [—2.0, 2.0].

Policy Training - Policy training aims to learn a control policy, 7 : state —
action, that optimizes the agent’s action selection strategy towards minimiz-
ing the reward penalty. Particularly, to stabilize the pendulum in its upright
position.

We train policies using Soft Actor-Critic (SAC) from Stable Baselines because
of its suitability for RL in continuous state and action spaces [2]. It should
be noted that alternative algorithms, such as DDPG or PPO, could also be
employed. However, they were not the primary focus in our study.

3 Evaluation and Results

The state-transition model was validated within the actual Pendulum environ-
ment. Comparisons between predicted and actual state trajectories confirm the
model’s capability to accurately approximate the pendulum’s dynamics. As il-
lustrated in the forecast error is higher in regions with no training data
compared to well-sampled areas.

Subsequently, control policies are trained using SAC with default parameters
in Stable Baselines. To evaluate the influence of penalizing low-density states,
policies are trained with a density threshold of 0.025 and varying penalty values.

Unknown Area - H | }
Fnowm frea [I:)—.

0.00000 0.00002 0.00004 0.00006 0.00008 0.00010 0.00012 0.00014
Mean Squared Error

Fig. 2: Comparison of forecast errors (MSE) between regions with sufficient
training data and those without.

This threshold was determined by analyzing different states in the data-density
model. Additionally, the starting state during training is fixed at the resting
position (pendulum hanging straight down, 8 = 7, with 6 = 0). sum-
marizes the evaluation results for different penalty levels after successful policy
training.

p | Left path (%) | Right path (%)
2 41 59
10 36 64
30 15 85

Table 1: Results showing the proportion of left and right paths taken under
varying penalty levels after 150.000 training steps. The numbers indicate how
often the penalized area was visited through swing up within 2000 episodes.

We observe, as the penalty increases, the tendency to favor the right path
becomes more visible (see . By examining the original reward function
at its boundaries, the underlying cause of this effect becomes evident, arising
from the balance between the original reward components and the added penalty.

Penalty 10 Penalty 30

o —

cos(8)
) cos(8)
M

e) B ow om aw
sin(8)

7 e
Fig. 3: Histogram of pendulum trajectories under penalty levels p = 10 (left)
and p = 30 (right). We observe a more visible trend to favor the right path with
increasing penalty p.

4 Conclusion

This work focused on integrating data-density models into reinforcement learn-
ing, aiming to improve policy learning by guiding agents to avoid regions with
sparse data while optimizing their primary objectives. A state-transition model
was trained to capture the environment’s dynamics for model-based RL.

The study revealed that penalizing low-density states does not necessarily
lead to their immediate and complete avoidance, given the maximum of 150.000
training steps in our experiments. Of course, the weighting of the penalty term
needs to be selected appropriately according to the environment’s reward func-
tion.

Further refinement of the reward function and additional computational re-
sources could enhance these results. Furthermore, penalties could be applied
dynamically based on density or by terminating episodes when density falls be-
low a specified level. Balancing the trade-off between penalizing deviations from
the optimal pendulum position and avoiding low-density regions is crucial for
optimizing the environment’s objectives while maintaining safety constraints.

The findings of this study provide valuable insights for applying density-
aware reinforcement learning in real-world scenarios, especially in safety-critical
applications. By building on these results, future work could explore the integra-
tion of alternative density estimation techniques and more sophisticated reward
designs.

References

[1] Y.-C. Chen. A tutorial on kernel density estimation and recent advances. Biostatistics &
Epidemiology, 1(1):161-187, 2017.

[2] T. Haarnoja, A. Zhou, P. Abbeel, and S. Levine. Soft actor-critic: Off-policy maximum
entropy deep reinforcement learning with a stochastic actor. In International conference
on machine learning (ICML 2018), pages 1861-1870, 2018.

[3] S. Hochreiter and J. Schmidhuber. Long short-term memory. Neural Computation MIT-
Press, 1997.

[4] V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G. Bellemare, A. Graves,
M. Riedmiller, A. K. Fidjeland, G. Ostrovski, S. Petersen, C. Beattie, A. Sadik,
I. Antonoglou, H. King, D. Kumaran, D. Wierstra, S. Legg, and D. Hassabis. Human-
level control through deep reinforcement learning. Nature, 518(7540):529-533, 2015.

[5] M. Riedmiller. Neural fitted q iteration—first experiences with a data efficient neural re-
inforcement learning method. In 16th European conference on machine learning (ECML
2005), Porto, Portugal, 2005., pages 317-328. Springer, 2005.

[6] M. A. Roehrl, T. A. Runkler, V. Brandtstetter, M. Tokic, and S. Obermayer. Modeling
system dynamics with physics-informed neural networks based on lagrangian mechanics.
IFAC-PapersOnLine, 53(2):9195-9200, 2020.

[7] R. S. Sutton and A. G. Barto. Reinforcement learning: An introduction. MIT press, 2.
edition, 2018.

[8] M. Towers, A. Kwiatkowski, J. K. Terry, J. U. Balis, G. D. Cola, T. Deleu, M. Goulao,
A. Kallinteris, M. Krimmel, A. KG, R. Perez-Vicente, A. Pierré, S. Schulhoff, J. J. Tai,
H. Tan, and O. G. Younis. Gymnasium: A standard interface for reinforcement learning
environments. arXiw preprint arXiv:2407.17032, 2024.

	Introduction
	Methodology
	Evaluation and Results
	Conclusion

