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Abstract. Quantum algorithms present unique advantages over classi-
cal methods but remain constrained by the limited number of qubits in
current quantum computers. This limitation hinders their effectiveness in
machine learning tasks, such as image classification. Despite its relevance,
the impact of these constraints on quantum machine learning remains un-
derexplored. This study addresses this gap by analyzing preprocessing
techniques for preparing images on quantum processors. We evaluated
10 dimensionality reduction methods across four standard datasets using
three distinct quantum neural network architectures. The results pro-
vide valuable insights into optimizing classification efficiency under qubit
constraints, paving the way for broader applications of quantum machine
learning.

1 Introduction

Quantum computing (QC) leverages principles such as superposition and en-
tanglement, offering significant potential across domains like machine learning
and image processing. Although early applications on Noisy Intermediate Scale
Quantum Devices (NISQ) have not yet surpassed classical algorithms, their abil-
ity to handle complex tasks highlights a promising future for QC in data intensive
areas [1].

Despite its potential, QC remains constrained by the fragile nature of qubits,
which are highly susceptible to noise and environmental interactions [2]. These
limitations, combined with the limited number of qubits available on NISQ de-
vices, hinder their ability to process high dimensional input data, a common
requirement in image classification tasks [1]. Consequently, dimensionality re-
duction has emerged as a critical preprocessing step for adapting image data
to quantum systems. Despite its importance, the impact of different dimen-
sionality reduction methods on quantum machine learning performance remains
underexplored in the existing literature.
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This study systematically evaluates 10 dimensionality reduction techniques,
including those proposed in [3], [4], and [5], across four datasets of varying com-
plexity, using three distinct quantum neural networks (QNN) architectures to
highlight the interaction between preprocessing techniques and quantum circuit
design. By analyzing trade-offs in accuracy, computational efficiency, and adapt-
ability, the findings provide practical recommendations for integrating classical
and quantum methods, enhancing the feasibility of image classification in con-
strained quantum systems.

The paper is organized as follows: Section 2 reviews related works, Section
3 describes QNN architectures and dimensionality reduction methods, Section 4
presents experimental results and analysis, and Section 5 concludes with findings
and future directions.

2 Related Works

In the context of image classification, recent methods address quantum comput-
ing limitations, such as those in [6], which leverage filters inspired by classical
Convolutional Neural Networks (CNNs) [7] to enhance Quantum Convolutional
Neural Networks (QCNNs) for high dimensional inputs. These methods im-
prove accuracy despite hardware constraints. Other studies mitigate limitations
by resizing images (e.g., 4x4), compatible with NISQ devices.

A comparative study [1] evaluated classical methods, including Support Vec-
tor Machines (SVMs) and CNNs, against quantum counterparts using the MNIST
dataset. It employed NISQ devices with the PauliFeatureMap to encode data
into quantum states within a 16 qubit circuit, demonstrating trade-offs in adapt-
ing classical preprocessing for quantum environments.

Input size remains a key challenge in quantum computing, with limited
studies systematically exploring dimensionality reduction methods. Hybrid ap-
proaches combining classical techniques and QNNs are gaining traction, lever-
aging classical preprocessing to overcome qubit constraints.

Several resizing algorithms, such as top-hat filtering [8], bilinear interpo-
lation [3], and Lanczos methods [4], offer diverse trade-offs between efficiency
and image quality. More advanced methods, including bicubic interpolation [9],
Gaussian smoothing [5], and Mitchell-Netravali filters [10], cater to specific scal-
ing needs, balancing computational complexity with visual fidelity. Quantum
Principal Component Analysis (QPCA) [11] represents a pioneering quantum
data reduction method, but remains constrained by hardware limitations, fur-
ther emphasizing the importance of hybrid classical-quantum strategies in pre-
processing.

3 Quantum Neural Network Methods

QNNs are quantum circuits designed for classification and regression as their
classical counterparts, but they rely on the use of quantum principles to increase
their performance. In this study, all QNNs classify data into two classes, rep-



resented as +1 or −1. These classifications depend on unitary transformations
parameterized by θ.

The first QNN model follows the approach in [12], encoding input data into
a quantum state |ψ, 1⟩ and applying unitary transformations Ui(θi) optimized
through a loss function. The final qubit, measured via a Pauli operator Yn+1,
serves as the readout, producing results based on trained parameters. A 16
qubit circuit encodes preprocessed data, with unitary transformations enabling
entanglement via Ising interactions between the components X and Z. The
readout qubit is entangled with the circuit via a Hadamard and a NOT gate,
ensuring that the measurement process is effectively integrated into the network’s
functionality.

The second QNN, a QCNN [13], features 3 pooling layers and 80 qubits. It
applies CNOT gates to adjacent qubits in the convolutional layer, maintaining
the same input size for comparability. The readout qubit uses Hadamard and
NOT gates.

The third QNN extends the first, improving error mitigation and architecture
efficiency. Incrementally, CNOT gates reduce the circuit to 8 qubits, followed by
Controlled Z (CZ) gates, which further reduce the data to 4 qubits. The readout
qubit remains consistent with that in the previous circuits.

4 Results

Experiments were conducted using the 10 filters described in Section 2 on four
datasets: MNIST, Fashion MNIST, CIFAR-10, and CIFAR-100. These datasets,
with varying geometric complexities, help evaluate the filters impact on shape
preservation and classification performance.

The MNIST and Fashion MNIST datasets consist of 70,000 grayscale images
(28x28 pixels), with Fashion MNIST being more complex due to greater vari-
ability in clothing and accessory categories. CIFAR-10 and CIFAR-100 contain
60,000 and 100,000 color images (32x32 pixels), respectively, with CIFAR-100
offering more granularity through 100 classes with 600 images each. Testing
different QNN architectures on these datasets enables analysis of how filters
preserve image information and enhance performance.

Although results may not rival state-of-the-art quantum neural networks, as
shown in [1], this was expected due to the circuit’s simplicity and was not the
main goal. The true findings emphasize the achieved results of classical dimen-
sionality reduction techniques, even in basic quantum architectures as shown in
Table 1, as viable alternatives or complements to advanced quantum embedding
methods [14].

In the second circuit, the QCNN demonstrated superior overall performance,
as shown in Table 2. Even in a more complex circuit, the choice of filters not
only contributed to more consistent results across different configurations but
also led to a significant improvement in performance, underscoring the critical
impact of appropriate filter selection.

The results in Table 3 demonstrate a trade-off between accuracy and reli-



Filter/Dataset MNIST CIFAR-10 CIFAR-100 Fashion MNIST
Hat/Tent 0.67 0.57 0.63 0.79
Bilinear 0.86 0.56 0.53 0.56
Bicubic 0.91 0.62 0.64 0.69
Lanczos (radius 3) 0.87 0.57 0.66 0.69
Lanczos (radius 5) 0.85 0.60 0.62 0.69
Gaussian 0.86 0.62 0.63 0.68
Nearest 0.91 0.63 0.61 0.69
Area 0.77 0.60 0.66 0.80
Mitchell-Netravali 0.86 0.62 0.67 0.69

Table 1: Accuracy of filters on the base circuit.

Filter/Dataset MNIST CIFAR-10 Fashion MNIST CIFAR-100
Hat/Tent 0.73 0.66 0.78 0.72
Bilinear 0.90 0.61 0.61 0.55
Bicubic 0.88 0.68 0.70 0.67
Lanczos (radius 3) 0.87 0.66 0.68 0.63
Lanczos (radius 5) 0.87 0.67 0.69 0.64
Gaussian 0.88 0.68 0.68 0.67
Nearest 0.87 0.67 0.69 0.70
Area 0.84 0.68 0.80 0.79
Mitchell-Netravali 0.88 0.67 0.68 0.77

Table 2: Accuracy of filters on the QCNN circuit.

ability in the error correction circuit. Error correction stabilizes performance
across datasets and filters but slightly reduces overall accuracy by mitigating
noise, which diminishes filter specific optimizations. In complex datasets like
CIFAR-10 and CIFAR-100, the circuit prioritizes stability over peak accuracy,
highlighting its practicality for quantum applications where consistency and pre-
dictability are crucial.

Considering the results across all networks and datasets, it is important to
evaluate the trade-offs inherent to the different resizing techniques used, such
as variations in sharpness, preservation of similarity, computational cost, and
area covered. Interestingly, simpler filters like the Hat filter still managed to
enhance accuracy in specific scenarios, proving viable depending on dataset and
configuration.

The results also reveal that the differences in mean accuracy across datasets
are influenced by the complexity of the dataset and the network architecture. In
simpler datasets like MNIST and Fashion MNIST, the choice of filter significantly
impacted performance. However, in more complex datasets like CIFAR-10 and
CIFAR-100, the differences across filters were less pronounced, particularly in
architectures with error correction mechanisms.



Filter/Dataset MNIST CIFAR-10 Fashion MNIST CIFAR-100
Hat/Tent 0.67 0.58 0.78 0.62
Bilinear 0.86 0.58 0.58 0.62
Bicubic 0.86 0.58 0.70 0.64
Lanczos (radius 3) 0.86 0.57 0.69 0.62
Lanczos (radius 5) 0.86 0.58 0.69 0.63
Gaussian 0.86 0.58 0.68 0.64
Nearest 0.86 0.57 0.69 0.61
Area 0.77 0.58 0.80 0.65
Mitchell-Netravali 0.86 0.57 0.69 0.68

Table 3: Accuracy of filters on the error mitigating circuit.

Furthermore, the QCNN architecture demonstrated improvements in overall
accuracy and stability across filters, showing the value of convolutional layers in
handling geometric complexities in image data, highlighting the importance in
using filters that preserve such geometry. On the other hand, the error correcting
circuit lowered peak accuracy due to its qubits aggregating information, having
more stable results. These findings emphasize the dual importance of aligning
the right filter with the circuit design to address dataset specific challenges and
ensure reliable performance.

5 Conclusion

The investigation into the impact of classical dimensionality reduction algo-
rithms on QNNs has yielded valuable insights. Despite the limitations in qubit
capacity and noise sensitivity of quantum devices, this study highlights the crit-
ical role classical preprocessing algorithms play in hybrid setups, achieving high
accuracy and efficient execution.

Among the evaluated techniques, Nearest Neighbor interpolation consistently
performed well across datasets, while Area and Bicubic also showed competi-
tive results depending on the dataset and circuit architecture. These findings
reinforce the importance of selecting dimensionality reduction techniques that
minimize information loss and maximize efficiency, particularly in constrained
NISQ environments.

The study also emphasizes the interplay between preprocessing choices and
quantum circuit architecture. Simpler circuits exhibited greater variability across
filters, while advanced architectures like QCNNs and error-correcting QNNs
achieved enhanced stability and consistent performance. This demonstrates the
need to integrate preprocessing strategies with architectural design, ensuring
critical image features are preserved, making hybrid approaches increasingly vi-
able.

Future research should explore integrating error mitigation techniques with
classical preprocessing to further stabilize performance while maintaining high
accuracy. Investigating the scalability of these methods for larger datasets and



their execution in distributed and cloud environments would offer valuable in-
sights. Additionally, expanding research to include emerging quantum error
correction protocols could further unlock the potential of NISQ.
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