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Abstract. This paper presents an explainable ensemble learning frame-
work using Bootstrap Aggregating to predict structural damage in ma-
sonry buildings during seismic events. It estimates the peak ground ac-
celeration (PGA) leading to the damage control limit state (significant
damage) based on structural parameters. The model achieves high ac-
curacy (R2=0.9536, MAE=0.0057) and interpretability through SHAP,
aligning with structural engineering principles. Compared to finite ele-
ment analyses, it offers faster computations (milliseconds) and scalability,
enabling rapid intervention planning after earthquakes. Developed under
theMEDEA project (EU Grant n. 10101236), it supports disaster response
and enhances seismic resilience.

1 Introduction

Seismic events pose a significant threat to the structural integrity of buildings,
which collapse when they can no longer sustain lateral loads during an earth-
quake. Accurate prediction of the structural response under seismic loading is
thus key for risk assessment and mitigation. Building response is evaluated using
Engineering Demand Parameters (EDPs), such as internal forces and relative
displacements, to estimate damage levels called limit states: D1 (minimal), D2
(moderate), D3 (significant), and D4 (severe) [1].

Traditional approaches, such as those based on the finite element method
(FEM), are widely used but may have high computational costs and scalabil-
ity limitations, particularly when applied to large datasets or real-time eval-
uations [2, 3]. Recent advancements in artificial intelligence (AI) have shown
promising results in seismic damage prediction, offering faster and more scalable
solutions to model the seismic behavior of buildings. For example, with artificial
neural networks [4, 5], support vector machines [6], and decision trees [7].
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However, limitations include focusing on specific structural configurations
and often disregarding key damage thresholds, such as the peak ground accel-
eration (PGA), i.e., the acceleration that leads a building to reach critical limit
states that precede collapse [8]. Also, existing methods typically lack inter-
pretability, a key requirement that helps experts work alongside these systems
and validate predictions against structural engineering principles [9].

This paper presents an explainable ensemble learning framework that pre-
dicts the damage to masonry buildings during seismic events, based on structural
parameters. The framework uses Bootstrap Aggregating and SHapley Additive
exPlanations (SHAP) [10] to achieve high accuracy and interpretability. To
design and train the framework, we created a large dataset of 1176 masonry
buildings. Each sample comprised the structural parameters of a building asso-
ciated with the PGA at the D3 limit state obtained via nonlinear FEM pushover
analysis. Our framework accurately predicts the PGA at the D3 limit state while
providing SHAP explanations consistent with structural engineering principles.
Compared to FEM, our approach significantly reduces computational require-
ments, making it suitable for large-scale or real-time applications. The paper
is organized as follows: Section 2 presents the dataset; Section 3 describes the
experiments; Section 4 discusses the results; Section 5 draws the conclusions.

2 Dataset

We generated a dataset of 1176 benchmark masonry structures representing typi-
cal constructions built between 1945 and 1990 in regions targeted by the MEDEA
project’s pilot studies. The base configuration (see Fig. 1f and Fig. 1g) had a
rectangular layout (12.4 m by 9.7 m) with a floor height of 2.85 m, two internal
masonry walls (0.3 m thick), and slabs of reinforced concrete and clay elements.
Buildings were generated by combining the number of levels (2-4), floor height
(2.85-3.40 m), number of internal alignments (1 or 2), wall thickness (0.30-0.45
m), and opening area (6.2-21.6 m2). Mechanical properties were sampled from
the sets as follows: shear strength {0.028, 0.04, 0.09, 0.05} MPa, compressive
strength {1.4, 2.0, 5.8, 2.6} MPa, gross density {16, 16, 22, 18} kN/m3, elas-
tic modulus {1080, 1410, 2850, 1500} MPa, and shear modulus {360, 450, 950,
500} MPa. We combined these mechanical properties to generate various build-
ing layouts: disordered stone, regular ashlar, squared stone block, and clay brick
masonry. Figures 1a-1e show example building layouts considered.

Each dataset sample comprised 18 features from expert advice: number of
levels; average floor height; side length ratio; total floor area; number of internal
wall alignments in the x and y directions; area of the openings in external and
internal walls; thickness of external and internal walls; shear strength; compres-
sive strength; gross density; elastic modulus; shear modulus; effective shear area;
seismic floor mass; and mass-to-shear area ratio. These features influence sta-
bility, stiffness, and resistance to seismic loads [11], determining the structure’s
ability to absorb and dissipate forces without collapsing (e.g., the shear modulus
measures a material’s resistance to shear deformation when subjected to a force



Fig. 1: Example structures: (a) two-level; (b) and (c) three-level; (d) four-level;
(e) with two types of masonry; (f) plan view and (g) perspective view of the
basic structural configuration used to generate masonry structures.

parallel to its surface). The first six features are global and describe the overall
structure; the others are local and measured for each building level. Based on
expert advice, we standardized the input to 30 values per building, regardless of
the number of levels: the global features, and the local features of the ground and
top levels. Features were numbered as follows: F0-F5 (global); F6, F8, . . . , F28

(local, ground floor); F7, F9, . . . , F29 (local, top floor). The dataset also included
PGA values for D1-D4 damage states, derived from pushover analysis.

3 Experiments

We developed and compared various AI models to predict the PGA at the D3
limit state, using roof displacement as an EDP. The D3 state indicates buildings
needing structural intervention after a seismic event. We trained the decision
tree, k-nearest neighbors (k-NN), random forest, bagging, adaptive boosting,
gradient boosting, extreme gradient boosting (XGBoost), and light gradient
boosting (LightGBM). Ensemble techniques were prioritized for reliability in
high-dimensional, complex problems [12].

First, the dataset was randomly split into a training set (80%) and a test
set (20%). Both sets underwent z-score normalization, using (µ, σ) derived from
the training samples. Then, we jointly optimized the hyperparameters and se-
lected relevant features, ensuring an unbiased evaluation. After defining a set
of possible values for each hyperparameter via grid sampling, we generated hy-
perparameter configurations by combining these values in all possible ways. For
each configuration, Sequential Feature Selection (SFS) identified the best fea-
tures using samples from the training set. The SFS used the mean squared
error (MSE) as loss function; performance was evaluated using the R2 metric



Table 1: Selected features and performance metrics on the test set.
Model Selected Features (IDs) R2 MAE
Bagging F0, F7, F14, F22, F24, F25 0.9536 0.0057
Random Forest F0, F4, F6, F7, F13, F16, F23, F25 0.9474 0.0057
Light GBM F0, F6, F14, F15, F20, F23, F25, F29 0.9531 0.0056
k-NN F0, F4, F6, F7, F14, F20, F22, F24, F27 0.9499 0.0056
Decision Tree F0, F7, F13, F14, F22, F24, F25 0.8769 0.0095
XGBoost F0, F7, F14, F20, F24, F25, F26, F28 0.9534 0.0057
Gradient Boosting F0, F4, F7, F10, F11, F14, F22, F23, F25 0.9528 0.0058
Adaptive Boosting F0, F4, F7, F11, F14, F25, F28 0.9457 0.0059

(a) (b)

Fig. 2: Regression plots, R2 and MAE on the test set of the bagging model (a)
and SHAP local explanation for one sample (b).

with the given feature set and hyperparameter configuration. After selecting
the best features for a given configuration, 10-fold cross-validation was repeated
30 times to evaluate performance. The samples in each fold were normalized
with (µ, σ) obtained from the training folds and folds were repopulated at each
iteration. For each configuration, the average R2 across all runs determined the
effectiveness of the feature set and hyperparameter values.

We used the best-performing combination of features and hyperparameters
to train the AI models on the training set. Table 1 summarizes the performances
on the test set of all models. As can be seen, the best one was based on Bagging
with decision trees as base learners. Fig. 2a shows its regression plot with R2

and mean absolute error (MAE) metrics, where the points in orange are samples
with errors higher than 1.5 × MAE. The hyperparameters were optimized by
exploring the number of decision trees in {10, 20, 50, 100, 200} and the maximum
depth in {5, 10, 15, 20} to balance computational efficiency and accuracy. Higher
values did not increase performance.

4 Discussion

The framework allows experts to interpret results based on Shapley explanations.
The SHAP plots in Fig. 3 show the most influential features and their values.
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Fig. 3: SHAP beeswarm plot (a) and bar plot (b).

The beeswarm plot in Fig. 3a provides a global explanation with the distribution
of SHAP values for each feature across all samples. The x-axis position indicates
the SHAP value, representing (feature impact on the predicted PGA); the color
indicates the feature value. High (low) SHAP values push predictions towards
higher (lower) PGAs, indicating better (worse) structural resilience. Key fea-
tures such as F22 (shear modulus at the ground floor [GF]) and F24 (effective
shear area at GF) dominate the plot. For F22, higher values (red) consistently
correspond to positive SHAP values, reflecting stiffer masonry materials that
enhance lateral resistance and increase the predicted PGA. Likewise, wider ef-
fective shear areas (F24) lead to higher PGA predictions, representing stronger
walls that can carry greater seismic loads. Conversely, features like F7 (area
of openings in external masonry walls at the top floor [TF]) show that higher
values (red) lead to lower predicted PGA values. This reflects a diminished wall
stiffness due to large openings, which increases vulnerability to seismic forces.

The bar plot in Fig. 3b aggregates the average absolute SHAP values across
samples, highlighting F22, F24, and F7 as the most relevant features. The others,
such as F25 (effective shear area at TF), F14 (average shear strength of masonry
at GF), and F0 (number of levels), represent interactions between material prop-
erties, structural geometry, and seismic behavior. For example, the average shear
strength captures the masonry capacity to resist shear-induced failure, while the
number of levels reflects the gravitational load and height-related vulnerabilities
affecting the dynamic response of the structure.

The waterfall plot in Fig. 2b provides a local explanation with feature con-
tributions for one sample (building) of those in Fig. 2a. As the plot shows, the
feature values contribute to the predicted PGA (0.206, top-right) by increas-
ing/decreasing the base value (E[f(x)]), i.e., the mean predicted PGA across
all test samples. Features F24 (effective shear area at GF), F7 (area of the
openings of the external masonry walls at TF), and F25 (effective shear area
at TF) have the largest positive impacts, namely, +0.016, +0.011, +0.01. This
aligns with masonry mechanics, where severe seismic damage often results from
shear failure in panels when the applied shear force exceeds their shear strength.
A masonry structure can then resist lateral forces based on the effective shear
area—reduced by openings and the material’s shear strength. These factors
determine the structure’s overall lateral load-bearing capacity.



SHAP explanations confirmed that the model captures critical engineering
principles, such as the importance of material stiffness, load distribution, and
the detrimental effects of excessive openings or insufficient shear resistance.

Regarding computational times, the Bagging model makes predictions in ∼8
milliseconds per building, while pushover analysis takes 5-15 minutes. Also,
the model eliminates the need for detailed configuration required by pushover
analyses, further accelerating the process and enabling quick, large-scale seismic
risk assessments. This makes the framework ideal when assessing the risk of
many buildings, as typical after an earthquake.

5 Conclusions

This paper has presented an explainable ensemble learning framework for pre-
dicting structural damage in masonry buildings under seismic events. Using
Bagging with decision trees and SHAP analysis, the model showed high accuracy
(R2=0.9536, MAE=0.0057) while maintaining consistency with structural engi-
neering principles. The framework offers efficient and interpretable predictions
of the PGA at the damage control (D3) limit state, significantly reducing compu-
tational time compared to FEM analyses. This helps speed up post-earthquake
safety assessment and intervention planning.
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