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Abstract. Computerized detection of relevant lung sound events has
the potential to assist physicians during auscultation and to monitor the
severity of pulmonary diseases in ambulatory settings. In some cases, real-
time detection of adventitious lung sounds is required to provide instant
feedback to physicians, e.g. during autogenic drainage therapy. State-
of-the-art solutions for this task leverage deep learning models, which
vary significantly in complexity. For real-time applications on resource-
constrained devices, such as stethoscope-integrated hardware, both detec-
tion accuracy and model complexity are important to consider. While
most existing research focusses primarily on accuracy, this work evaluates
both accuracy and computational complexity. The contributions of this
work are threefold. First, the effect of using a full breathing cycle as input
is studied to assess its impact on event detection performance. This ap-
proach introduces a computational cost due to the required segmentation
process. Second, a transformer-based architecture is compared with two
relatively simple convolutional models, each utilizing different input hori-
zons. Evaluations are conducted on both public and in-house lung sound
datasets. Third, recognizing that the event detection task aligns better
with a multi-label setting than the commonly used multi-class setup, this
study compares both approaches. We conclude that a multi-label output
outperforms a multi-class approach, that inputs segmented per breath-
ing cycle are preferred, and that the high complexity models have similar
performance to the models with low complexity on unseen data.

The source code is available through this GitHub repository.

1 Introduction

In recent years, there has been a growing trend in using digital and wearable
stethoscopes for auscultation. These devices allow for the convenient storage of
recorded lung sounds from both hospital and ambulatory environments directly
into electronic health records [1]. Furthermore, when integrated with a real-
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time computerized lung Sound Event Detection (SED) system, they have the
potential to instantly assist pulmonologists in making their diagnoses [2].

Multiple types of adventitious lung sound events exist, which can be divided
into two groups: continuous and discontinuous events [3]. An example of a
continuous event is wheezing, which has frequencies in the range 100 to 5000 Hz
and typically lasts more than 100 ms [3, 4]. Crackles are discontinuous events
characterized as impulsive sounds and typically last between 5 to 15 ms [4].

The authors of [5] evaluated the use of the recently proposed Audio Spec-
trogram Transformer (AST) [6] to determine whether a manually segmented
breathing cycle contains a crackle, a wheeze, both or if it can be considered as
normal. The AST was compared with traditional convolutional networks such
as CNN6 [7, 8], EfficientNet, and ResNet50. The obtained results indicate that
AST with pre-training on ImageNet and AudioSet obtains the highest ICBHI
score (balanced accuracy), which was equal to 62.37%. The results for Efficient-
Net, ResNet50, and CNN6 were 56.56%, 56.85% and 55.24% resp.

Although the results from [5] are promising, further research is necessary
to develop a viable solution for clinical settings. One challenge lies in the re-
quirement for segmented breathing cycles, which adds an additional layer of
processing to the lung sound data. Accurately estimating breathing cycles is
not only challenging, but also adds computational complexity and is prone to
errors. In addition, the proposed AST model architecture is computationally de-
manding, making it unsuitable for resource-constrained processing devices that
may be integrated into the stethoscope. Moreover, while lung sound classifica-
tion is often treated as a multi-class problem in the literature, it is inherently a
multi-label problem, as lung sound events are not mutually exclusive [4].

The main contributions of this work are: (1) the study of the effect of using a
full breathing cycle as input to assess its impact on event detection performance,
(2) the comparison of a state-of-the-art transformer-based architecture with two
relatively simple convolutional models in terms of detection performance and
computational complexity. In case of continuous audio input, models are also
evaluated for their generalizability on a second, independent in-house lung sound
dataset, (3) recognizing that the event detection task aligns better with a multi-
label setup.

2 Methodology

2.1 Data

The public ICBHI dataset [3] contains respiratory sounds and was first presented
at the International Conference on Biomedical Health Informatics (ICBHI) in
2017. In total, 126 participants were recorded to create 920 recordings and two
sets of annotations. The sounds were recorded with four unique stethoscopes,
each with its own sampling rate. The dataset contains annotated breathing cy-
cles, crackle and wheeze events, and information about participants’ respiratory
disease. The ICBHI dataset has approximately 5.5 h of audio, and 6,898 an-
notated breathing cycles. The data are divided into official training (60%) and



(a) Segmented (b) Continuous

Fig. 1: Breathing cycle segmented and continuous model input for AST and
CNN6 models. Wheezes are annotated in red and crackles in white boxes.

test (40%) sets based on the patient IDs.
The in-house ZOL dataset was collected at the Ziekenhuis Oost-Limburg

(ZOL) hospital and contains 46 1-minute auscultation recordings originating
from three Chronic Obstructive Pulmonary Disease (COPD) patients. Data
were collected using a Littmann 3200 digital stethoscope, which is one of the
stethoscopes also used in the ICBHI dataset. Auscultation positions were the
following: anterior left & right, posterior left & right, and right-hand side of the
neck. Annotations were obtained by a majority vote over 3 trained annotators.
As this dataset does not have breathing cycle annotations, it can only be used
to evaluate models trained on continuous audio.

2.2 Pre-Processing

In order to ease the comparison, our work used the same pre-processing as in [5].
First, the audio is resampled to 16 kHz. Second, spectrograms are created using
a Short-Time Fourier Transform (STFT) with 25 ms windows and 10 ms steps.
The Hann window function is applied. Third, the spectrogram is converted to
the log-mel domain by applying a mel-filterbank of length 128. The spectrograms
always have a time dimension of 8 seconds, as this is the duration of the longest
breathing cycle segment. For shorter segments, the spectrogram is zero padded
until 798 frames (8 s). For continuous audio, the entire 8 second window is
filled with audio using a 50% overlap between windows. In contrast to [5], the
training samples were not augmented, and breathing cycles shorter than 8 s were
zero padded instead of repeated. Figures 1a and 1b show the segmented and
continuous input resp.

2.3 Evaluation

The ICBHI Challenge [3] proposed balanced accuracy as evaluation metric (re-
ferred to as “ICBHI score”), which is the average of true positive and true
negative rates. Evaluation metrics are averaged over three runs which use the
same validation set and which have random seeds for reproducible model ini-
tialisation. In order to make a fair comparison with a multi-class setup, the



multi-label predictions are scored by aggregating metrics from 4 binary compar-
isons, i.e. normal-vs-rest, crackle-vs-rest, wheeze-vs-rest and both-vs-rest.

Both [5] and [7] used the official test set for tuning hyperparameters, as well
as evaluating the final model. To keep the ICBHI official test set independent
from the data used during training, in this work a validation set was sampled
from the official training set without replacement (80% train, 20% val.). Data
from a single patient is either fully in the training or validation set.

Since patients 156 and 218 occur both in the official training set and in the
official test set, these recordings are added to the validation set. In this way, no
weights are fitted to these test-set patients.

2.4 Model Architectures and Training

For model training, Adam optimiser and a cosine learning rate (LR) schedule
were used. For multi-class output, the cross-entropy (CE) loss was used with
4 output neurons (“normal”, “crackle”, “wheeze” & “both”). For multi-label
output, binary CE loss was used with 2 output neurons (“crackle” & “wheeze”).
Class weights were applied to accomodate for the class imbalance. For AST and
CNN6, training was done in two stages. In the first stage, pre-trained weights
were loaded and only the classifier was trained without cosine LR schedule. In
the second stage, the model with the lowest validation loss was entirely trained
and cosine LR schedule was applied. A grid search was performed to find the
optimal combination of learning rate and weight decay parameter. The weights
were saved when the model reached the lowest validation loss. Details can be
found in Table 1.

The baseline model is composed of four convolutional blocks having 32, 32,
64 and 128 filters resp., all of size 5 × 5. Max pooling with dimension 2 × 2
is always performed in between convolution layers. Next, three fully-connected
layers of 64, 32 and 32 neurons are applied. ReLU activation is always used, as
well as batch normalisation. Dropout (50%) is only applied on the convolutional
layers. For this baseline model, the multi-label decision thresholds were tuned
using the point closest in terms of Euclidean distance to coordinates (0, 1) on
the ROC curve. The input to the baseline spans 0.5 s instead of 8 s, as the goal
is to deploy this model on an edge device and in real-time.

Classifier only Full model

Model Initialisation
Learning

rate
Epochs

Learning
rate

Epochs
Dropout

rate
Batch size

Weight
decay

AST MC-S IN + AS 1e-3 30 5e-7 50 n/a 16 1e-2
AST ML-S IN + AS 1e-3 30 1e-6 50 n/a 16 1e-4

CNN6 MC-S AS 1e-2 100 1e-3 200 50% 64 1e-5
CNN6 ML-S AS 1e-2 100 5e-3 200 50% 64 1e-5
AST ML-C IN + AS 5e-3 30 1e-6 50 n/a 16 1e-3
CNN6 ML-C AS 1e-2 100 5e-3 200 50% 64 1e-5

Baseline Random n/a n/a 1e-3 200 50% 128 1e-3

Table 1: Settings of the various models (MC: multi-class, ML: multi-label, S:
segmented input, C: continuous input). ImageNet initialisation is abbreviated
as “IN”, and AudioSet initialisation is abbreviated as “AS”.



Model
Nr. of param. ICBHI Validation ICBHI Official Test ZOL Dataset
Nr. of FLOPS Set Score Set Score Score

AST MC-S
87,531,736

60.78 ± 0.17 47.40 ± 0.40 n/a
97.6 billion

AST ML-S
87,528,660

63.64 ± 0.51 53.66 ± 0.50 n/a
97.6 billion

CNN6 MC-S
4,306,372

59.42 ± 1.84 43.09 ± 1.09 n/a
15.8 billion

CNN6 ML-S
4,305,346

62.87 ± 4.41 51.04 ± 2.85 n/a
15.8 billion

AST ML-C
87,528,660

59.18 ± 1.93 48.85 ± 0.56 57.00 ± 3.46
97.6 billion

CNN6 ML-C
4,305,346

58.96 ± 1.70 46.24 ± 0.80 56.19 ± 19.67
15.8 billion

Baseline ML-C
482,914

53.78 ± 1.25 45.40 ± 0.87 58.72 ± 8.56
84.3 million

Table 2: Obtained ICBHI scores for the different settings (MC: multi-class,
ML: multi-label, S: segmented input, C: continuous input). All numbers repre-
sent mean ± sample standard deviation (3 runs). The number of floating-point
operations (FLOPS) was calculated using fvcore package [9]. One combined
multiplication & addition is counted as one FLOP by fvcore.

The CNN6 architecture [7, 8] was used with AudioSet pre-trained weights.
These pre-trained weights came from [8] and were used to initialise the model.
For CNN6, the multi-label decision thresholds were set at 0.50.

The AST architecture was initialised with ImageNet and AudioSet pre-trained
weights, as was done in [5] and [6]. The AST’s patch size was set to 16 × 16,
with overlap 10× 10. The multi-label decision thresholds were set at 0.50.

3 Results & Discussion

The first experiment was to compare a multi-label output to existing multi-class
models, using breathing cycle segmented audio input. The corresponding results
are shown in the upper block of Table 2. When looking at the ICBHI score, AST
performs best on the official ICBHI test set in both multi-class and multi-label
setups. It can be seen that a multi-label setup results in improved ICBHI score.
The results on the validation set are comparable to the test set results of [5].

In the second experiment, the model input was switched from breathing
cycle segmented spectrograms to continuous audio spectrograms. The results
are presented in the middle block of Table 2. With continuous audio input,
ICBHI scores declined around 5% for both AST and CNN6. It is likely that this
is caused by the start of a breathing cycle to not always be at the beginning of
the segment that is offered as input to the model.

When evaluating the models on the in-house ZOL data the simple baseline
model has the highest ICBHI score, indicating that AST and CNN6 might still
overfit the ICBHI data. Furthermore, it is observed that for the ZOL data, the
standard deviations increased compared to those on the ICBHI data. Potentially
this is caused by the limited number of Littmann 3200 samples in the ICBHI
training set (1.1% for continuous audio).



When the baseline model is compared to the state-of-the-art models with
continuous input, it can be seen that the baseline model has almost comparable
ICBHI score as the CNN6 model, with 8 times less parameters. Compared to
AST, the baseline model performs worse, but also has 180 times less parameters.
This poor performance could be caused by the short time span of the input.

4 Conclusion & Future Work

In this work, three contributions were made. First, a multi-class output was
compared to a multi-label output using existing state-of-the-art lung event de-
tection models. It was found that the multi-label setup improves the classifica-
tion performance. Second, continuous audio input was compared to breathing
cycle segmented audio input. A decline in model performance was seen when
switching from breathing cycle segmented input to continuous input. Third, it
was observed that a CNN model with low computational complexity has similar
performance on the unseen in-house dataset compared to the AST model which
has considerably more parameters and floating-point operations.

Future work could study the impact of data augmentation and channel char-
acteristics on the accuracy of models with varying computational complexity.
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