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Abstract. Alzheimer’s disease (AD), a neurodegenerative disorder, pro-
gressively impairs memory and cognitive functions. Magnetic resonance
imaging (MRI) is used as AD diagnosis and progress monitoring method.
Convolutional Neural Network (CNN) is a data-driven deep learning model
containing layers transforming data input using convolution filters. The
goal of this paper is to present an analysis of the CNN architectures for
classifying AD diagnoses using functional brain MRI scans acquired by
the experimental dataset from the Alzheimer’s Disease Neuroimaging Ini-
tiative (ADNI). Results show CNNs variants such as InceptionV3 and In-
ceptionResNetV2 as powerful computational tools for developing predic-
tive neuroimaging biomarkers in AD diagnosis applications, with accuracy
above 70%.

1 Introduction

Alzheimer’s disease (AD) is an irreversible, progressive, degenerative brain con-
dition that causes neurons to die. At first, it leads to memory loss and decreases
thinking skills, ultimately damaging the patient’s ability to fulfill simple tasks
[1]. There is no universal test for Alzheimer’s diagnosis, meaning doctors use a
combination of techniques, for instance, the patient’s family history, and cogni-
tive and psychological tests. Nevertheless, since these methods are vulnerable to
human errors, they may lead to erroneous conclusions and postpone the treat-
ment [2].

The functional Magnetic Resonance Imaging (fMRI) is a technique that al-
lows for the knowledge of the brain’s activities through the change of blood
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flow, permitting the perception of which part of the brain is responsible for the
diverse functions of the body [3]. Additionally, fMRI and magnetic resonance
imaging (MRI), non-invasive and less susceptible to human error, are the most
used methods for diagnosing AD.

Since brain function networks are comparatively constant among different
healthy patients, biomarkers of neural connectivity can be used to predict dis-
eases such as AD [4]. In 2013, Suk and Shen [5] developed a classifier based on
a support vector machine and a stacked auto-encoder network to extract low-
to mid-level features from images to classify AD stages. The accuracy of the
AD/NC (Normal Controls) classification was 95.9% using MRI and Positron
Emission Tomography images.

Payan and Montana [6] obtained an accuracy rate of 95.39% in classifying the
patient’s stage using an auto-encoder with a 3D convolutional neural network
(CNN). In 2016, Sarraf and Tofighi [7] classified, with an accuracy testing of
96.85%, the fMRI data of AD subjects from NC using a CNN and the LeNet-5
(Yann LeCun network) architecture. Sarraf and Tofighi [8] also proposed and
implemented pipelines, which resulted in an accuracy rate of 99.9% for fMRI
pipelines. In 2018, Liu et al. [9] proposed a classification outline based on CNN
and Bidirectional Gated Recurrent Units together to capture the features of 3D
PET (Positron Emission Tomography) images for AD diagnosis.

In this study, an in-depth analysis of seven CNN architectures, including Vi-
sual Geometry Group with 16 and 19 layers (VGG16 and VGG19, respectively),
Residual neural network with 50 layers (ResNet50), Inception architecture with
residual connections (InceptionV3 and InceptionResNetV2), extreme version of
Inception (Xception), and MobileNet are proposed for neuroimaging recogni-
tion for the diagnosis of AD. The CNN architectures were trained using the
Alzheimer’s Disease Neuroimaging Initiative (ADNI) dataset to classify brain
images as healthy or indicating signs of dementia.

The remainder of this study is organized with a case study called ADNI-1,
discussed in Section 2. Section 3 describes CNN architectures and fundaments.
In Section 4, the results and analysis of the data classification obtained are
presented. Finally, the conclusions and future research implications are outlined
in Section 5.

2 Case Study: ADNI-1 and ADNI Screening

The dataset ADNI-1 has neuroimaging data, biological markers, and clinical
and neuropsychological evaluations to detect the progression of mild cognitive
impairment (MCI) and early AD. The neuroimaging data are obtained from
fMRI and MRI, presenting information describing neural tissues’ shape, size,
and integrity. It is possible to use the ADNI database to relate the patterns of
MRI and fMRI images to the AD diagnosis [10] to assist the patient, leading to
a possible improvement in life quality.

The ADNI database consists of exams from 55 to 95-year-old patients, with
the majority of them aged approximately 75 years old, who were classified into



three different groups: individuals diagnosed with AD, people with a progression
of MCI, and healthy examples. Four stages of cumulative data capture were
made. The number of patients and the time they were involved may be observed
as described in Table 1. There are 244 subjects randomly selected from the
ADNI-1 and ADNI Screening programs, 124 women and 120 men. Among them,
102 patients were classified with AD, and 142 were labeled as healthy subjects.

Table 1: ADNI program
ADNI-1 ADNI-GO ADNI-2 ADNI-3

Start date Oct/2014 Sept/2009 Sept/2011 Sept/2016
Healthy 200 200 350 483
MCI 400 600 1000 1000
AD patients 200 200 350 350

All fMRI neuroimage files were transferred through the ADNI, with each
patient having 100 images. Next, the images were conjoined to a type represent-
ing a brain in two dimensions using dcm2niix. Further format conversion was
also needed since the trained CNNs used two-dimensional images at network en-
trances, so the med2imag library was used to separate a slice from the patients’
brains. The images were then resized and normalized to 256x256 pixels. Finally,
a file type was generated containing various pieces of information regarding the
instances, such as age, gender, the name of the images of the subject, and the
target label (class) for the task of classification.

3 CNN Architectures

The CNNs are biologically inspired by Hubel and Wiesel’s [11] early work on the
cat’s visual cortex. A standard feed-forward CNN consists of layers described
as: convolutional, pooling, and fully connected. The convolutional layer consists
of a set of kernels (filters) that are convolved over the height and width of the
input image in the case of two-dimensional images. In this layer, each neuron
is locally connected to parts of the neurons in the previous layers. Based on
this process, the network learns filters that activate when they detect a visual
feature, which produces a separate two-dimensional activation map [12].

After several convolutional and pooling layers and a normalizing layer, the
high-level reasoning in the CNN is done via fully connected layers, which take
all the neurons from the previous layer and connect them to every single one
of its neurons [13], capturing correlations between different features previously
produced. Moreover, a possible last layer of a CNN is an output layer, and for
cases of classification tasks, the softmax operator is commonly used.

The main CNN architectures include the VGG16 and VGG19 networks [14],
ResNet50 [15], InceptionV3 and its InceptionResNetV2 variant [13], Xception
[16], and MobileNet [17]. Transfer Learning was used to simplify the training
of neural networks. The method uses the knowledge of a pre-trained neural
network through a more complete database, increasing the generalization in
the classification task of another neural network, to reduce the training time



and computational power required. Then the transfer of the weights trained
in the ImageNet image bank was loaded, which contains about 150,000 images
in a thousand classes and is used as a benchmark for the DL algorithms. For
parameter hypertuning the approach used was Bayesian optimization.

All the evaluated CNN models were trained using Elastic Compute Cloud
machines. The k-fold cross-validation method was used for the training and the
creation of the results. The k-fold cross-validation consists of evaluating and
comparing learning algorithms that divide all the data into k > 1 ∈ Z sets. The
process occurs when the data are randomly selected and divided into k groups;
one group is selected for testing and the others for training. The more optimized
value for k depends on the amount of data for training, and a poor choice may
result in an unsatisfactory representation of the skills of the model. Performance
indicators such as accuracy, precision, recall, F1 score, and Matthew’s correlation
coefficient (MCC) are applied to evaluate CNN. These indicators are given by:

Accuracy =
TP + TN

TP + TN + FP + FN
, (1)

Precision =
TP

TP + FP
, (2)

Recall =
TP

TP + FN
, (3)

F1 Score = 2 ·
Precision · Recall

Precision + Recall
. (4)

MCC =
TP · TN − FP · FN

√

(TP + FP )(TP + FN)(TN + FP )(TN + FN)
(5)

where (TP) True Positives is the number of correct predictions for the positive
class, (TN ) True Negatives is the number of correct predictions for the negative
class, (FP) False Positives is the number of incorrect predictions for the positive
class, and (FN ) False Negatives is the number of incorrect predictions for the
negative class.

4 Results and Discussion

All images were split randomly from the ADNI1 database: Screening (SC),
among the 224 selected patients, there were 168 placed in the training group
and about 58 in the test group. The adopted ratio for dividing data over the
test and training set was 75%. After the training process, the same results were
obtained using the statistical metrics. The results are presented in Table 2.
The values shown are the averages of the cross-validation of 10 folds, while the
standard deviation was inserted next to each value to give more consistency to
the results. The set of tests is evaluated with many metrics: accuracy, precision,
recall, F1 score, and MCC. The best results in Table 2 are presented in bold.



Table 2: Results of the classification performance metrics
Network Accuracy Precision Recall F1 Score MCC

VGG16 0.942 ± 0.02 0.924 ± 0.05 0.992 ± 0.04 0.922 ± 0.03 0.877 ± 0.05

VGG19 0.918 ± 0.04 0.896 ± 0.06 0.886 ± 0.07 0.889 ± 0.06 0.827 ± 0.09

ResNet50 0.799 ± 0.04 0.796 ± 0.08 0.623 ± 0.08 0.696 ± 0.07 0.562 ± 0.09

InceptionV3 0.989 ± 0.01 0.986 ± 0.02 0.984 ± 0.01 0.985 ± 0.01 0.977 ± 0.02

InceptionResNetV2 0.983 ± 0.01 0.988 ± 0.02 0.966 ± 0.02 0.976 ± 0.01 0.963 ± 0.02

Xception 0.890 ± 0.02 0.876 ± 0.04 0.823 ± 0.04 0.847 ± 0.03 0.764 ± 0.05

MobileNet 0.953 ± 0.02 0.939 ± 0.04 0.935 ± 0.03 0.937 ± 0.02 0.901 ± 0.04

The results using InceptionV3 had the best accuracy, with high mean val-
ues and low standard deviation. InceptionResNetV2 and VGG19 presented a
promising performance in terms of the accuracy measure. MobileNet presented
a median accuracy near 95%. This result was close to that of VGG16, which had
a median close to 94%. The classification in this study had a high computational
cost because the architectures had 143 million parameters to be adjusted.

The Friedman test [18] is a non-parametric statistical test that detects sig-
nificant treatment differences across multiple test subjects. After calculating the
Friedman test for the results in Table 2 the achieved p-value was 0.00011. Since
this value is less than 0.05, it is possible to reject the null hypothesis that the
metric mean is the same for all seven models. Showing sufficient evidence to
conclude that the type of model used leads to statistically significant differences
in each metric.

5 Conclusion and Future Research

Several CNN architectures were compared using statistical metrics to classify
AD through fMRI images. The results achieved the expected objectives, as the
high accuracy values found after the training of the CNN models proved the
task of classifying Alzheimer’s and non-Alzheimer’s cases using fMRI images as
a database to be feasible. All seven architectures produced good performances
regarding the task, with the algorithms that presented the best results in terms of
accuracy being the InceptionV3 and InceptionResNetV2 networks, with 98.93%
and 98.30% mean accuracy, respectively.

In terms of future work, further analysis will be done using additional datasets
for higher comparison, such as the Capsule networks [19] and NASNet (Neural
Architecture Search Network) [20], which have previously shown promise to be
better than the Inception networks.
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