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Abstract. Predicting tissue-specific protein functions and protein-
protein interactions (PPI) is essential for understanding human biology,
diseases, and potential therapeutics. Recently, as a promising direction,
more and more complex unsupervised feature learning approaches have
emerged in the field, but none of them consider the scale-free nature and
the underlying geometry of multi-layer PPI networks. Therefore, this
study proposes contextualized, tissue-specific representation learning in
non-Euclidean geometries and demonstrates that hyperbolic embeddings
capture the structure of multi-layer PPI networks with less distortion and
achieve better performance in tissue-specific protein function prediction.

1 Introduction

Proteins, as the primary building blocks of cells, drive most biological processes
through their interactions, making them essential for understanding biology,
disease mechanisms, and potential therapeutics. The functions of proteins are
highly context-dependent, varying based on the tissue and cell type in which
they are expressed [1]. Consequently, recent research has shifted focus from
universal, human-level PPI networks to tissue-specific protein interactions and
functions [1, 2, 3]. Computational methods, particularly representation learn-
ing, have emerged as potential tools to model and understand multi-layer protein
interaction networks while maintaining tissue specificity and to predict new in-
teractions and multicellular functions across various human tissues [2, 3, 4].

Another relevant research area involves investigating the geometric properties
of real-world networks. It has been shown that power-law degree distributions
and strong clustering in scale-free networks [5] emerge naturally from underlying
hyperbolic metric spaces [6]. For instance, PPI networks are scale-free, with some
better-connected genes due to a preferential attachment driven by evolutionary
processes [7], therefore having an inherent hyperbolic geometry [8].
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Building on this insight from network science, researchers started to inte-
grate non-Euclidean geometry into machine learning models, aiming to cap-
ture the nature of real-world networks through continuous, hierarchy-preserving
representations [9, 10]. Recently, hyperbolic alternatives have been developed
for numerous machine learning models, including shallow graph representation
learning [9, 11], matrix-factorization [10], and graph convolutional neural net-
works [12, 13]. These geometry-aware methods have been successfully applied on
several biology-related networks such as disease taxonomy trees [11], biological
pathway graphs [13], metabolite disease association [10] and PPI networks [12].

However, no studies have investigated the geometry of either multi-layer or
contextualized protein networks. Therefore, in this study, we propose a non-
Euclidean version of a contextualized multi-layer graph embedding method and
demonstrate through experiments on tissue-specific PPI networks that hyper-
bolic embeddings achieve lower graph distortion and improved protein function
prediction. We hope our results motivate the research community to incorporate
hyperbolic geometry into multi-layer models. To this end, we made our Pytorch-
based implementation with the embeddings and a hyperbolic visualization dash-
board available at https://github.com/PDomonkos/hyperbolic-ohmnet.

2 Materials and Methods

2.1 Data

Our study utilized a widely used benchmark multi-layer PPI dataset compiled by
Zitnik et al. [2], one of the most extensive tissue-specific human protein networks
available. The backbone of the dataset is a tissue hierarchy consisting of 219
human tissues with 107 leaves and 112 internal nodes. The dataset contains
tissue-specific PPI networks for all the leaves and 37 other internal nodes, with
each network comprising an average of ≈ 1,900 proteins and 25,500 interactions.
A total of 503 (less than initially reported) tissue-specific protein functions are
also included, covering 48 tissues. Each contains binary labels for all proteins in
the tissue, indicating whether a gene corresponds to the biological function.

As a quantitative measure of the latent PPI geometry, we computed Gro-
mov’s δ-hyperbolicity [12]. The lower the δ, the more tree-like the graph is. As
expected for the scale-free PPI networks [7], we observed an average δ = 1.18, a
relatively low value, indicating an underlying hyperbolic geometry and support-
ing the potential efficiency of using non-Euclidean embeddings.

2.2 Model

2.2.1 OhmNet

We investigated the OhmNet model, a hierarchy-aware unsupervised feature
learning approach proposed for the multi-layer tissue network by Zitnik et al. [2].
OhmNet utilizes the tissue hierarchy tree and the PPI networks in the leaf nodes
to efficiently learn separate d-dimensional representations for proteins in each
tissue by optimizing the following two objectives:



1. Proteins within a tissue that share similar PPI network neighborhoods
are assigned similar features. For this objective, separate Node2Vec [14]
models are trained in each leaf tissue. Based on the dot product simi-
larities between embedding pairs, Node2Vec maximizes the likelihood of
preserving neighborhoods sampled via random walks from the network.

2. Multiple representations of the same protein in adjacent layers of the hi-
erarchy share similar features. For simplicity, this is achieved through a
regularization that minimizes the Euclidean distance between embeddings
corresponding to the same protein in parent and child tissues.

Starting with random feature initialization, the training algorithm alternates
between updating leaf and internal node embeddings until convergence. Em-
beddings in the leaves are updated based on both objectives: PPI neighborhood
preservation and tissue hierarchy regularization, i.e., minimizing distances be-
tween corresponding protein embeddings in the leaf and its parent. The resulting
objective function is the sum of the Node2Vec loss and the regularization term
weighted by a parameter λ. Each iteration includes a single epoch of gradient
descent on this non-convex optimization problem. Internal nodes are updated
based on only the Euclidean distances in the second objective, facilitating an
efficient closed-form solution, where in each iteration, protein representations in
the internal tissues are updated with the average of the corresponding embed-
dings in the parent and children tissues. For more details on the baseline model
and data used, we refer the readers to the paper by Zitnik et al. [2].

2.2.2 Non-Euclidean OhmNet

In this paper, we propose modifications incorporating hyperbolic geometry into
the OhmNet approach. More precisely, we apply the hyperboloid/Lorentz model,
popular in machine learning due to its simplicity and numerical stability [11,
12, 10]. The d-dimensional hyperboloid manifold is embedded in a (d+1)-
dimensional Euclidean ambient space asHd,β = {x = (x0, ..., xd) ∈ Rd+1|∥x∥2L =
−β, x0 > 0}, where −1/β represents the constant negative curvature of the
space, ∥x∥2L = ⟨x,x⟩L denotes the squared Lorentzian norm, and ⟨x,y⟩L =

−x0y0 +
∑d

i=1 xiyi is the Lorentzian inner product. Distances between vectors
are measured using the manifold distance, dL(x,y) = arcosh(−⟨x,y⟩L) or the
squared Lorentzian distance, d2L(x,y) = ∥x − y∥2L = −2β − 2⟨x,y⟩L. For the
latter, there exists a closed-form centroid µ =

√
β(

∑n
i=1 xi)/|∥

∑n
i=1 xi∥L|, min-

imizing the
∑n

i=1 d
2
L(xi, µ) expression [11].

We kept the OhmNet algorithm the same but replaced the Euclidean vectors
with embeddings on Hd,β . To do so, we first modified the Node2Vec model.
Fortunately, we only had to find an alternative to the dot product between the
embeddings, as the rest of the algorithm is independent of the geometry used.
There is no dot product similarity in the Lorentz model, so we converted the
squared Lorentzian distance to a similarity metric in the form of e−d2

L . As for the
hierarchy regularization, we used d2L instead of the Euclidean distance dE . After



initializing the embeddings with a normal distribution on the Lorentz manifold,
we ran the alternating OhmNet algorithm. Since they lie on a hyperbolic man-
ifold, training the embeddings in leaf tissues now requires Riemannian gradient
descent [15]. However, due to the choice of the Lorentzian distance function in
the regularization, updates for internal tissues remain efficient, as similarly to
the Euclidean average, the closed-form Lorentzian centroid µ can be used as an
update for the protein representations.

3 Experiments and results

3.1 Unsupervised representation learning

Embeddings were trained in an unsupervised way on the 107 leaf PPI networks
and the tissue hierarchy, as outlined above. We built upon the Pytorch and
geoopt [15] libraries to implement the models and perform the Riemannian opti-
mization. While Zitnik et al. [2] used stochastic gradient descent with a manual
learning rate schedule, we found that the currently popular optimizers with an
adaptive learning rate perform better. We ended up using the Root Mean Square
Propagation as the alternating nature of the OhmNet updates hinders the usage
of optimizers with first-order momentum. We trained 128-dimensional embed-
dings in both Euclidean space and in Hd=128,β=1. The training involved 100 al-
ternating iterations with a batch size of 64, a learning rate of 0.025, and λ = 0.2.
After a grid search on the hyperparameters, we found robust performance across
tested configurations, so we left most of the parameters unchanged. We refer
the readers to our public repository for more details on the implementation and
the hyperparameters.

3.2 Graph distortion

One aspect that we have compared the embeddings on is the graph distance
distortion, i.e., how well the manifold distances between protein representations
capture the shortest-path distances in the PPI networks. To account for the
different magnitudes of dE and dL, we used the scaled graph distortion pro-
posed by McNeela et al. [13]. For each network and manifold, we scaled embed-
ding distances by a constant, minimizing the distortion between manifold and
shortest-path distances. During training, we measured distortions on the largest
connected components of all 144 PPI networks. Figure 1 presents the results.
Although only leaf PPIs were used during training, distortion levels in both leaf
and internal tissues were almost identical. Comparing the two geometries, as
the low Gromov’s δ and the scale-free nature suggested, hyperbolic embeddings
reach much lower distortion.

3.3 Node classification

Another aspect used to evaluate the embeddings is node classification, more
precisely predicting protein functions based on the learned representations. 503



Fig. 1: Mean and 95% confidence intervals are shown for the graph distortions
for dE and dL during training. Distortions were evaluated on 144 PPI networks
corresponding to both leaf and internal tissues.

Fig. 2: Cross-validation results for protein function prediction, showing mean
AUROC and AUPR metrics with 95% confidence intervals. Metrics are pre-
sented for classifiers leveraging global and local information on Euclidean and
hyperbolic embeddings across internal and leaf tissues.

tissue-specific protein functions were used across 48 tissues in both internal
and leaf nodes, forming 503 separate, highly imbalanced binary classification
tasks with a positive-to-negative label ratio of 1:60. Following Zitnik et al. [2],
we trained linear classifiers for each task using the modified Huber loss. For
the hyperbolic version, we replaced the linear layer with the hyperboloid lin-
ear transform[12], which applies matrix multiplication and bias addition in the
Lorentz model. Linear classifiers operate with one separating hyperplane in the
embedding space, therefore assessing how well the global structure of the em-
beddings encodes protein functions. To get a more comprehensive view, we also
applied K-Nearest Neighbors (KNN) classifiers, capturing the local structure
based on dE and dL. We performed cross-validation (CV) on each task. Instead
of a 10-fold CV proposed by Zitnik et al. [2], we used a stratified 5-fold CV to
get more realistic results and to ensure that every test split has at least one
positive sample. Figure 2 shows the resulting area under the receiver operating
characteristic and precision-recall curve metrics (AUROC and AUPR). As we
can see, the hyperbolic model outperforms the Euclidean one in predicting leaf
and internal tissue-specific functions based on both local and global information
encoded in the embeddings.



4 Conclusion

This study investigated contextualized protein embeddings in non-Euclidean ge-
ometries, proposing a Lorentzian version of the multi-layer OhmNet model in-
corporating hyperbolic Node2Vec and hierarchy regularization. Our findings in-
dicate that hyperbolic embeddings outperform the Euclidean approach in terms
of both PPI graph distortion and tissue-specific protein function prediction.

Based on our results, future research should investigate the hyperbolic na-
ture of multi-layer networks and incorporate non-Euclidean geometry into more
advanced, inductive methods, such as tensor factorization [4] and graph atten-
tion networks [3]. Another promising direction is to integrate additional prior
knowledge on tissues and cell types into the tissue-specific protein network [3].
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