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Abstract. This study explores novel activation functions that en-
hance the ability of neural networks to manipulate data topology during
training. Building on the limitations of traditional activation functions
like ReLLU, we propose SmoothSplit and ParametricSplit, which intro-
duce topology «cutting» capabilities. These functions enable networks
to transform complex data manifolds effectively, improving performance
in scenarios with low-dimensional layers. Through experiments on syn-
thetic and real-world datasets, we demonstrate that ParametricSplit out-
performs traditional activations in low-dimensional settings while main-
taining competitive performance in higher-dimensional ones. Our find-
ings highlight the potential of topology-aware activation functions in ad-
vancing neural network architectures. The code is available via https:
//github.com/Snopoff/Topology-Aware-Activations.

1 Introduction and Related Work

Despite significant advances, the underlying mechanisms of neural network learn-
ing remain only partially understood. Studies such as [[] have shown that a well-
trained network (i.e., one achieving near-zero generalization error) progressively
transforms a complex dataset M = M, U M, into a topologically simpler one.
This transformation is largely attributed to the non-injective nature of ReLU,
which tends to «glue» points together, whereas functions like tanh preserve the
input topology.

Additional work [2, 8, 4, 5] suggests that untangling latent manifolds is crucial
for improving classification performance, emphasizing the role of topological
transformations in deep learning. Moreover, topology-aware activation functions
have been applied successfully in tasks such as image segmentation [§] and graph
neural networks [[7].

Motivated by these insights, we propose novel non-homeomorphic activa-
tion functions that «split» data manifolds—effectively «cutting» topology rather
than simply compressing it. The functions, SmoothSplit and ParametricSplit,
are designed to enhance a network’s ability to restructure its internal represen-
tations in a topology-aware manner. Through experiments on both synthetic
and real-world datasets, we demonstrate that ParametricSplit notably improves
performance in low-dimensional settings while remaining competitive in higher
dimensions, underscoring the potential of topology-aware activation functions for
advancing neural network architectures.


https://github.com/Snopoff/Topology-Aware-Activations
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2 Non-Homeomorphic Activation Functions

As discussed in the introduction, the effectiveness of ReLU (as detailed in [1]) is
largely due to its topological properties when considered as a function from R to
R. Since ReLU is not a homeomorphism, it alters the topology by compressing it;
specifically, it «eliminates» non-trivial cycles in the homology of the underlying
data manifold, thereby simplifying its structure.

Topology simplification, however, can also be achieved by «cutting» the data
manifold. When applied appropriately (e.g., along non-trivial cycles), this pro-
cess divides the manifold into simpler components. A function capable of such
cutting must also be non-homeomorphic; unlike ReLLU, which is non-injective, it
must be non-surjective. For example, consider the function, termed Split:

Split(x) = x + sign(z)c,

where c¢ is a learnable parameter, initialized randomly between 0 and 1, that
controls the distortion at x = 0. When used as an activation function, Split
divides the original data manifold along each dimension.

Although effective for splitting data, Split is non-differentiable and therefore
unsuitable for use in neural networks. To overcome this limitation, we propose
a smooth approximation, SmoothSplit, defined as

SmoothSplit(z) = = + tanh(az)e,

where « (optimized during training and initialized randomly between 0 and
1) determines the sharpness of the approximation. For sufficiently large a,
SmoothSplit closely approximates Split while maintaining differentiability, thus
making it compatible with gradient-based training.

While splitting data manifolds can simplify their topology, neural networks
may still require the ability to «glue» points together, particularly in the final
layers. To enable both splitting and compressing operations, we introduce a
parametric activation function, ParametricSplit, defined as:

bx +bcosa —sina, if x < —cosa,
ParametricSplit(z) = { ztana, if —cosa <z < cosa,

T +sina — cosa, if x > cosa.

This function can emulate ReLU, Split, or SmoothSplit under appropriate pa-
rameter settings:

o For a =0, b = 0, ParametricSplit(z) approximates ReLU(x — 1).
« For a = 7, b= 1, ParametricSplit(z) recovers Split(x).

« Fora € [Z,Z) withb = 1, ParametricSplit(z) approximates SmoothSplit(z),
with a uniquely defined by a.



(a) Original Circles (b) Split with SmoothSpht ParametrlcSpht
dataset c=0.2 Wlthc—02 a =40 WlthCL—SI,b—l

Fig. 1: Comparison of different transformations applied to the Circles dataset.

In summary, there are two primary types of manifold deformations: compres-
sion and splitting. While ReLLU primarily compresses the data manifold, Split
and SmoothSplit effect splitting. The proposed ParametricSplit function uni-
fies these operations by enabling both compression and splitting, depending on
its parameter settings. Figure Bgillustrates these transformations on the Circles
dataset. Since the parameters of ParametricSplit are learnable during training,
it integrates seamlessly into the neural network pipeline. In the following sec-
tions, we compare ParametricSplit with ReLLU and other widely used activation
functions on both synthetic and real-world datasets.

3 Experiments

We evaluated the proposed activation functions in binary classification tasks,
comparing their performance with ReLU, tanh, and PReLU. The experiments
involved two synthetic datasets, CurvesOnTorus and Circles, and one real-world
dataset, the Breast Cancer Wisconsin dataset. In the synthetic datasets, each
class is sampled from a distinct manifold that is intertwined with others, making
linear separability impossible. The data manifolds in these synthetic datasets
are one-dimensional and immersed in R? and R? for Circles and CurvesOnTorus,
respectively (illustrated in Figure ). As for the loss function, both in training
setting and validation setting, we used binary cross-entropy loss.

(a) Dataset Circles (b) Dataset CurvesOnTorus

Fig. 2: Synthetic datasets

We utilized fully connected neural networks for the experiments. The acti-



vation functions being compared were applied to all layers except the last one,
which used ReLLU. This design ensured that the network «glued» data compo-
nents at the final layer, as mentioned earlier. However, further ablation studies
are needed to assess the impact of this configuration.

To investigate the effects of network depth and layer dimensionality on per-
formance, we varied the number of hidden layers and the dimensions of each
layer. The number of hidden layers was set to {1,2,3}, and layer dimensions
varied depending on the dataset: {2, 3,4} for Circles, {3,4,5,6, 7} for CurvesOn-
Torus, and {30, 40, 80,100} for Breast Cancer Wisconsin.

The models were trained for 100 epochs with weights initialized using Xavier
normal initialization, except for networks with ReLLU, which used Xavier uniform
initialization. The learning rate was set to 0.05, and datasets were split into
training and test sets in a 70/30 ratio. To ensure robustness, each experiment
was repeated 10 times.

4 Results

The experimental results summarized in Table m demonstrate that the proposed
ParametricSplit activation function performs exceptionally well, particularly in
low-dimensional settings. It outperforms traditional activation functions such
as ReLU, tanh, and PReLU when the layer dimensions are small relative to
the data manifold’s intrinsic dimensionality. In higher-dimensional scenarios,
ParametricSplit achieves performance comparable to the best-performing con-
ventional activations. Similarly, SmoothSplit delivers competitive results, often
matching those of ReLU and tanh.

A notable observation is the strong performance of tanh and PReLU on
the CurvesOnTorus dataset in configurations with larger dimensions. This phe-
nomenon is likely due to the one-dimensional nature of the class manifolds in this
dataset; immersion in R? or higher affords the network sufficient degrees of free-
dom to disentangle the curves via homeomorphic transformations. Conversely,
in low-dimensional settings, the network benefits from explicitly manipulating
the data topology. The learnable parameters of ParametricSplit provide the
necessary flexibility to «cut» the topology and adapt to the constraints imposed
by limited layer dimensions.

5 Conclusion

In this study, we introduced novel activation functions, ParametricSplit and
SmoothSplit, which enhance neural networks by enabling explicit manipula-
tion of data topology. These functions extend the capabilities of traditional
activations such as ReLU by facilitating both topological «cutting» and «glu-
ing» operations, thereby offering greater flexibility in adapting to the underlying
data manifold. Our experiments on synthetic and real-world datasets demon-
strate that ParametricSplit consistently outperforms conventional activations in



# of Activation Circles CurvesOnTorus
layers functions
2 3 4 3 4 5
tanh 0.536 0.506 0.457 0.464 0.302 0.128
(£0.066) (£0.059) (£0.038) (£0.068) (£0.056) (+0.057)
1 ReLU 0.569 0.563 0.522 0.599 0.429 0.292
’ (£0.075) (£0.074) (£0.053) (£0.070) (£0.112) (£0.156)
PReLU 0.512 0.507 0.505 0.484 0.337 0.168
(4£0.093) (£0.071) (£0.076) (£0.112) (£0.118) (£0.107)
SmoothSplit 0.543 0.482 0.461 0.534 0.377 0.274
(£0.085) (+£0.081) (£0.052) (40.045) (£0.140) (£0.106)
ParametricSplit 0.527 0.494 0.398 0.462 0.251 0.202
(£0.012) (£0.087) (£0.128) (+0.144) (£0.193) (£0.122)
tanh 0.591 0.530 0.490 0.452 0.242 0.111
(£0.048) (£0.066) (£0.086) (£0.118) (£0.091) (+£0.069)
2 ReLU 0.576 0.513 0.511 0.504 0.383 0.283
(£0.064) (£0.096) (£0.123) (£0.105) (£0.134) (£0.120)
PReLU 0.511 0.462 0.428 0.426 0.230 0.155
(4+0.140) (£0.087) (£0.073) (£0.090) (+£0.160) (£0.127)
SmoothSplit 0.556 0.517 0.496 0.479 0.413 0.208
’ (£0.068) (£0.084) (£0.049) (£0.078) (£0.121) (£0.122)
ParametricSplit 0.555 0.455 0.388 0.295 0.217 0.172
o (£0.076) (+£0.142) (+£0.152) (+£0.132) (£0.193) (£0.211)
tanh 0.538 0.501 0.462 0.462 0.288 0.132
(£0.084) (£0.069) (£0.109) (£0.093) (£0.110) (+£0.055)
3 ReLU 0.601 0.506 0.479 0.521 0.483 0.241
’ (£0.048) (£0.076) (£0.116) (40.085) (£0.173) (£0.188)
PReLU 0.530 0.413 0.450 0.491 0.330 0.171
. (£0.079) (+0.069) (£0.106) (£0.097) (£0.220) (£0.148)
SmoothSplit 0.579 0.521 0.485 0.500 0.385 0.312
(£0.060) (£0.068) (£0.052) (£0.124) (£0.110) (£0.114)
ParametricSplit 0.516 0.531 0.385 0.387 0.326 0.134
(£0.086) (£0.063) (£0.171) (£0.168) (£0.236) (£0.158)
# of Activation CurvesOnTorus Breast Cancer
layers functions
6 7 30 40 80 100
tanh 0.080 0.044 0.659 0.659 0.659 0.659
(4+0.083) (+£0.0386) (£0.012) (£0.013) (£0.012) (£0.012)
1 ReLU 0.226 0.063 0.458 0.299 0.487 0.534
(£0.124) (£0.050) (£0.213) (£0.207) (+0.224) (£0.205)
PReLU 0.104 0.072 0.358 0.364 0.314 0.286
) (£0.120) (£0.103) (£0.214) (£0.209) (4£0.189) (+£0.137)
SmoothSplit 0.225 0.122 0.490 0.383 0.292 0.416
(£0.091) (£0.096) (£0.214) (£0.176) (£0.148) (£0.220)
ParametricSplit 0.144 0.111 0.327 0.230 0.443 0.352
(£0.089) (£0.106) (£0.190) (£0.066) (£0.228) (£0.183)
tanh 0.076 0.067 0.659 0.659 0.659 0.659
“ (£0.062) (£0.027) (£0.012) (£0.013) (£0.013) (£0.012)
5 ReLU 0.169 0.088 0.247 0.334 0.333 0.381
(£0.130) (£0.101) (+£0.149) (£0.214) (£0.227) (+£0.248)
PReLU 0.072 0.014 0.354 0.315 0.419 0.617
(£0.061) (+£0.014) (£0.219) (£0.183) (£0.183) (£0.131)
SmoothSplit 0.248 0.097 0.614 0.533 0.450 2.971
(£0.129) (£0.095) (£1.113) (£0.339) (£0.227) (£5.311)
ParametricSplit 0.058 0.035 0.310 0.243 0.567 0.541
(4£0.111) (£0.067) (£0.192) (£+0.096) (+£0.391) (£0.194)
tanh 0.099 0.035 0.659 0.659 0.659 0.659
(+£0.093) (£0.032) (£0.013) (£0.012) (£0.013) (£0.013)
3 ReLU 0.285 0.032 0.341 0.393 0.387 0.506
(£0.220) (£0.034) (£0.229) (£0.229) (£0.230) (£0.205)
PReLU 0.307 0.089 0.310 0.376 0.617 0.527
(£0.462) (£0.072) (£0.189) (£0.2086) (£0.164) (£0.223)
SmoothSplit 0.300 0.268 0.574 0.596 8.133 6.083
(£0.245) (£0.109) (£0.370) (£0.545) (£18.376) (£14.711)
ParametricSplit 0.127 0.085 0.283 0.386 0.465 0.500
(£0.190) (£0.177) (+0.161) (£0.216) (£0.272) (+0.255)

Table 1: Val. loss averaged in 10 runs




low-dimensional settings—where topological transformations are critical—while
remaining competitive in higher dimensions.

Future work will explore the broader applicability of these functions in diverse

machine learning tasks and assess the impact of topological transformations on
network generalization. Additionally, integrating these activation functions into
more complex architectures, such as convolutional or transformer-based models,
represents an interesting direction for further research.
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