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Abstract. The rapidly evolving field of machine learning for graph-
structured data gathered significant attention due to its ability to preserve
critical information inherent in complex data structures. As a result, sig-
nificant efforts have been dedicated to designing advanced architectures
and foundational models optimized for graph-based operations. Research
in this area explores methodologies for graph representation learning and
graph generation, incorporating probabilistic models such as variational
autoencoders and normalizing flows. Despite increasing interest from re-
searchers as well as their efforts in solving graph-related problems, several
issues and areas remain to be addressed to improve model generalization
and reliability. This tutorial reviews foundational concepts and challenges
in graph representation, structure learning, and graph generation, while
also summarizing the contributions accepted for publication in the special
session on this topic at the 33th European Symposium on Artificial Neural
Networks, Computational Intelligence, and Machine Learning (ESANN).

1 Introduction

Graphs serve as powerful and versatile abstractions that model complex systems
composed of interacting entities. These interactions often signify functional or
structural dependencies among the entities involved, making graphs an essential
tool for understanding and analyzing complex networks in diverse domains. Two
key examples of graph-structured data are molecular compounds and social net-
works. Molecular compounds can be viewed as networks in which atoms interact,
with chemical bonds influenced by interatomic distances and energies affected
by electrostatic interactions. These factors are important in shaping molecular
properties and behavior. Social networks, in contrast, depict interactions among
users and content like images, videos, and text. In addition to these examples,
graphs are vital in combinatorial optimization problems, where they can encode
symmetries and constraints.

The interest in deep learning for graph-structured data is increasing, follow-
ing the recent success in a broad range of practical applications. Traditional
deep learning operators, however, are often inadequate to effectively address the
unique challenges inherent in structured data, thus necessitating adaptation and
development of new techniques, including convolutional and pooling operators,
as well as optimization methods for discrete variables. Deep Graph Networks
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(DGNs) [1] have emerged as a leading approach in leveraging deep learning for
graph-structured data. These models are designed to learn complex represen-
tations that capture the underlying structure and relationships within graphs.
DGNs are particularly effective in various applications, including: (i) predicting
attributes of social network users based on their interactions; (ii) identifying
potential connections or relationships within a network, such as suggesting new
friends in a social media platform; and (iii) analyzing entire graphs to predict
properties, such as the toxicity of chemical compounds, akin to evaluating molec-
ular interactions. The evolution of DGNs can be traced back to the early use
of recursive neural networks on directed acyclic graphs [2, 3], evolving to han-
dle cyclic graphs through recurrent and convolutional paradigms [4, 5], up to
the development of graph foundation models [6]. Combining deep learning with
probabilistic modeling [7–12], DGNs offer powerful tools to learn distributions
over graph data [13–16] and design generative models able to sample from them
[17–20].

In recent years, interest in generative models has led to the development
of numerous approaches for generating graph structures and estimating their
properties. These approaches offer new possibilities in various domains, such
as social network analysis, biological networks, and infrastructure systems [21–
23]. However, the task of generating new graphs comes with new challenges
associated with the discrete nature of such data structure. During the genera-
tion, ensuring that the generated graphs possess the required properties, such
as degree distribution and community structures, is crucial for their validity and
applicability. However, driving the learning process to optimize such proper-
ties can lead to combinatorial and non-differentiable losses, often relating to the
graph isomorphism problem. Moreover, the size of the graph is, in general, pre-
scribed with the number of edges quadratic in the number of nodes. Therefore,
as the size of graphs increases, scalability becomes a pressing concern, necessi-
tating efficient algorithms to handle large graphs. Another critical challenge is
the development of robust evaluation metrics to assess the quality and realism
of generated graphs, as these metrics must effectively capture the nuances and
similarities between synthetic and real-world graphs. Balancing the need for di-
versity in generated graphs with the requirement for realism further complicates
the process [17, 18, 24]. Despite these challenges, generative models have shown
outstanding results, especially when applied to de novo drug design [19, 20].

The research field of machine learning and deep learning applied to graph
data not only advances technological capabilities, but also provides valuable in-
sights across various industries, standing at the forefront of modern data analysis,
bridging complex systems, and innovative deep learning techniques to address
some of the most complex challenges.

2 Deep Graph Networks and Foundation Models

Deep Graph Networks (DGNs) are architectures specifically designed for learn-
ing on graph-structured data. They are composed of multiple message passing
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Fig. 1: Illustration of a Deep Graph Network (DGN) message-passing mechanism
at step l. The highlighted subgraph (blue region) represents nodes exchanging
information through propagation (dashed arrows), demonstrating how central
node B aggregates features hℓ

v from its neighbors v ∈ NB . At the next step,
l + 1, the information contained in node G reach the node B.

layers that iteratively update node representations by exchanging information
across edges. These networks enable learning meaningful graph embeddings that
can be used for node classification, link prediction, and whole-graph classifica-
tion. This section introduces key background notions, describes the fundamental
mechanism of graph convolutions, and discusses emerging models such as Graph
Transformers [25] and foundation models.

2.1 Background Notions

A graph can be formally defined as a tuple g = (V, E ,X ,R), where V is the set
of nodes, and E is the set of edges connecting them. Graphs can be either undi-
rected, where edges represent bidirectional relationships, or directed, where
edges signify asymmetric interactions. The sets X and R specify the domains of
node and edge attributes, respectively. These attributes are often represented as
feature vectors, though discrete edge types are also common, such as in molecular
graphs where edges represent different chemical bonds.

The connectivity of a graph is often represented using an adjacency matrix
A ∈ {0, 1}|V|×|V|, where an entry Auv is nonzero if an edge exists between nodes
u and v. In cases where graphs are sparse (i.e., when the number of edges is
significantly smaller than the number of nodes squared), adjacency lists are more
efficient representations. The neighborhood of a node v, denoted as Nv, consists
of all nodes directly connected to v. Not rarely, temporal aspects come into play
and are modeled in the form of, e.g. time series associated with the graph nodes,
dynamic edges and growing graphs.

2.2 Graph Convolutions, Message Passing and Foundation Models

The fundamental operation in most DGNs is graph convolution, which generalizes
the concept of convolution in image processing to irregular graph structures.
Unlike grid-structured data such as images, graph neighborhoods are unordered



and variable in size. The convolution in DGNs is often formalized under the
message passing framework, consisting of two main steps:

Message Computation: Each node v generates messages based on its
current state hℓ

v and the states of its neighbors u ∈ Nv.
Aggregation and Update: Each node collects incoming messages and

updates its representation. An illustration of this process is shown in Figure 1,
where node B receives all the incoming messages from its neighbors NB .
This process can be written formally as:

hℓ+1
v = ϕℓ+1

(
hℓ
v, Ψ(ψℓ+1(hℓ

u, ruv) | u ∈ Nv)
)
,

where ϕ and ψ are learnable functions (e.g., neural networks), Ψ is a permutation-
invariant aggregation function such as sum or mean, and ruv, for (u, v) ∈ E , are
edge attributes in R. Stacking multiple message passing layers enables nodes
to incorporate information from multi-hop neighborhoods, enhancing their abil-
ity to learn expressive node embeddings. For node-level tasks, such as node
classifications, predictions are finally made from the obtained node embeddings.
Whereas graph-level tasks involve global pooling, where all node representations

are aggregated before a prediction is made as hg = Ψ
(
f(hv) | v ∈ Vg

)
, where f

is another learnable function.
While message passing has several advantages – such as enabling processing

graphs of different sizes, parameter sharing, keeping the computation sparse and
local, and permutation equivariance – they face a few challenges. The first one
is that the presented message passing has limited ability to distinguish isomor-
phic graphs, which relates to the concept of “expressive power”. Secondly, deep
stacking of message passing layers poses oversmoothing, underreaching and over-
squashing issues associated with hampered information exchange among nodes.

Inspired by the success of Transformers in natural language processing, and
addressing the local processing of standard DGNs, Graph Transformers have
been introduced recently, which incorporate global attention mechanisms. In
Graph Transformers, self-attention mechanisms are applied over nodes, allowing
each node to selectively attend to important nodes across the entire graph rather
than just its immediate neighbors. However, Graph Transformers also introduce
higher computational complexity due to theO(n2) cost of attention computation.
Hybrid models that combine local message passing with selective global attention
have been proposed to mitigate this issue.

Currently, Graph Foundation Models (GFMs) [6] are emerging as a key re-
search area, aiming to develop neural models that learn transferable graph rep-
resentations applicable to diverse, unseen graphs. The usefulness of GFMs lies in
their ability to perform tasks such as node classification, link prediction, knowl-
edge graph reasoning, and algorithmic reasoning across various graphs without
being limited to specific graph structures or feature dimensions. They achieve
this by learning transferable representations from data leveraging large-scale
pre-training on diverse graph structures. Several GFMs have been developed for
diverse applications, ranging from node classification [26] and knowledge graph



reasoning [27] to molecular and crystal modeling [28] and 3D protein structure
prediction [29]. Additionally, models such as MiniMol [30] and MolGPS [31]
focus on learning molecular representations using 2D graph structures, further
expanding the scope of GFMs in scientific and industrial domains.

3 Beyond Predictive DGNs: Graph Generation

Generative models are a type of algorithm designed to learn from a given train-
ing dataset and produce new data that resemble that of training. These models
focus on identifying the underlying patterns and structures within the training
data, allowing them to generate new samples that share characteristics with
the original data. Nowadays, these models have shown great potential in diverse
domains, such as the generation of novel images, videos, and structured data [21–
23]. The scientific community has dedicated significant effort to advancing deep
generative models for graph generation, as these models facilitate exploration
and applications in areas that were previously inaccessible with decent results.
Formally, let G denote the domain of graphs and G be a random variable. Gen-
erative models for graphs aim to estimate the unknown probability distribution

PG (G) as P̃G (G), which is responsible for generating the graph g in the dataset
D. Once the model has estimated the probability distribution, it can be used

to generate new, unseen graphs g̃ by sampling it from P̃G (G), i.e. g̃ ∼ P̃G (G).
The goal is to sample novel graph instances that were not seen during training,
while preserving structures and properties similar to those in the training data.

Generative models typically consist of two key components. The first compo-
nent, often based on methods like DGNs, is responsible for extracting meaningful
features from a given input graph g – this is adopted especially for model train-
ing. Instead, the second component, which is adopted both in the training and
generation phases, is in charge of generating a new graph g̃ given some features
in the input. In the learning phase, the model first extracts embeddings from
the input graph g and decodes them into a structure g̃ that aims to closely
match the original graph. The training process is further optimized with con-
straints to allow the sampling of new graphs. In the generation phase, features
are usually sampled from a reference probability distribution and decoded into
new structures.

Numerous approaches for graph generation are documented in the literature,
with many of them based on Variational Autoencoders (VAEs) [32], Generative
Adversarial Networks (GANs) [24], Normalizing Flows [33], Diffusion Models [34,
35], and Score Matching [36]. Additionally, the introduction of large language
models (LLMs) employing transformer architectures has broadened this field.
Originally developed for natural language processing, transformer-based models
have been successful in capturing complex graph patterns and have been applied
also to drug generation [37, 38].

The creation of new graph-based data structures presents novel challenges.
It requires addressing not only the issues associated with learning from graphs,
highlighted in Section 2.2, but also the challenges involved in generating new



graph-structured data. One significant problem in this context is the evaluation
of the generated graphs. Unlike traditional data types, graphs have complex
structures and properties that need to be preserved and accurately represented
in the generated outputs. Evaluating these graphs involves assessing their struc-
tural validity, diversity, and fidelity to the underlying distribution of real-world
graphs. Metrics such as node and edge distribution, graph diameter, and cluster-
ing coefficients are often used, but designing comprehensive evaluation methods
that capture all relevant aspects remains challenging. This makes the generation
of standardized benchmarks hard especially in fields where evaluating generated
graphs is particularly challenging, such as when graphs represent chemical struc-
tures. Additionally, the computational complexity involved in generating and
evaluating graph data poses another layer of difficulty. As graphs grow in size
and complexity, the computational resources required to generate them increase
significantly, specifically scaling quadratically with the number of nodes. Algo-
rithms must be efficiently designed to handle large-scale graphs while maintain-
ing accuracy and performance.

A significant application of generative models for graph-structured data is
the creation of chemical structures with drug-like properties. This interest arises
from a pressing issue: over the years the rate of new drug discoveries [39], visible
in Figure 2, has only slightly increased compared to the substantial investments
made in research and development by U.S. pharmaceutical companies [40], as
illustrated in Figure 3. This issue arises as the drug discovery and design process
are complex and resource intensive, often extending over 10-20 years with costs
exceeding $2 billion [41].

Generative models have shown great potential in tackling emerging use cases
significantly advancing theoretical research in the field of deep learning. Beyond
these theoretical advancements, they provide practical solutions with substantial
societal benefits. One notable application is in de novo drug design, where their
capability to efficiently explore and generate new molecular structures could
transform drug discovery. This promises to speed up the development of new
medications, reduce costs, and improve accessibility, ultimately enhancing public
health outcomes. Nonetheless, challenges persist, particularly in maintaining the
quality and reliability of the generated data.

4 Special Session’s Contributions

This year’s special session comprises several original contributions ranging on a
set of diverse topics related to the graph representation learning field.

3-WL GNNs for Metric Learning on Graphs1. This study proposes a
metric learning framework for graphs exploiting 3-WL GNNs. The framework
consists of a Siamese GNN-based embedding block for generating graph and
node-level embeddings and a metric block for distance computation. Results
show that 3-WL expressivity when paired with a node-level distance strategy
helps improve performance in metric learning tasks.

1Aldo Moscatelli, Maxime Bérar, Pierre Héroux, Florian Yger and Sébastien Adam
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Fig. 2: Number of FDA-approved drugs per year. Products like vaccines and
gene therapies are not included in this drug count.
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Fig. 3: Spending of the U.S. pharmaceutical industry, by PhRMA member com-
panies, on research and development at home and abroad.

D4: Distance Diffusion for a Truly Equivariant Molecular Design2.
This article introduces a novel Distance and Discrete Denoising Diffusion Model,
called D4, which builds upon MiDi [42] to enhance the chemical validity of molec-
ular generation. D4 uses atomic distances as a proxy for spatial information, re-
moving the need for SE(3) equivariant architectures and thereby simplifying the
overall design. The model generates molecular structures by reversing a noise
process and predicts the adjacency matrix to determine bond presence. Results
show that D4 matches MiDi’s performance in molecule topology generation while
outperforming it in spatial arrangement prediction.

Encoding Graph Topology with Randomized Ising Models3. The
paper proposes a reservoir computing model for encoding the topological in-
formation of graph nodes, designed for potential physical implementation us-
ing neuromorphic hardware. The model leverages the spin configuration of a
Lenz-Ising system to represent node embeddings. The study demonstrates that
this approach effectively computes node embeddings that encode topological
information, achieving node classification accuracy comparable to Graph Echo
State Networks (GESN). Competitive classification results are particularly evi-

2Samuel Cognolato, Davide Rigoni, Marco Ballarini, Luciano Serafini, Stefano Moro and
Alessandro Sperduti

3Domenico Tortorella, Antonio Brau and Alessio Micheli



dent when scaled to a large number of spin units, highlighting its potential for
neuromorphic implementation.

Towards Efficient Molecular Property Optimization with Graph
Energy Based Models4. In this article the authors propose a novel approach
for optimizing chemical properties with the Unsupervised Energy-based Molecule
Optimization (UEMO) model. UEMO implicitly learns chemical properties and
generates molecular graphs without requiring labeled data or explicit optimiza-
tion strategies. The model utilizes DGNs to process molecular graphs and
Langevin dynamics for sampling molecules. The experimental results show solid
performance in optimizing chemical properties, outperforming existing models,
and showing improved sampling efficiency due to its lightweight architecture.

Robustness in Protein-Protein Interaction Networks: A Link Pre-
diction Approach5. In this study the authors propose a method to predict
the robustness of protein-protein interaction networks (PPINs) by framing it as
a link prediction task. The approach bridges the gap between dynamic property
inference and static network analysis, enabling the exploration of long-range
functional dependencies in PPINs. The study demonstrates that a DGN can
accurately predict robustness for protein pairs by leveraging PPIN topology and
protein sequence embeddings.

5 Conclusions

With this tutorial and the corresponding ESANN 2025 special session, we aim
to give an overview of the dynamic field of machine learning and deep learning
applied to graph-structured data, focusing on foundational models like Deep
Graph Networks and Graph Transformers, and their diverse applications ranging
from social networks to molecular analysis. In addition, this special session aims
to foster the discussion on generative models for the graph field, highlighting
challenges such as scalability and evaluation complexity, especially in domains
like de novo drug design. To conclude, this article also highlighted contributions
from this year’s special session including advances in metric learning, diffusion
models, and protein interaction networks. Future research should enhance model
expressiveness and scalability for large graphs and datasets, while focusing on
establishing standardized evaluation benchmarks for generative models, which,
when integrated into real-world scenarios, promise significant societal benefits,
especially in healthcare and chemistry.
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