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Abstract. Quantum physics offers a new paradigm that promises to
make certain computations faster and more efficient. The recent progress
of quantum computers allows for more complex applications which lead
to a rising interest in transferring machine learning methods to quantum
hardware for practical applications. However, the development of quan-
tum computers is still in its beginnings and currently these approaches
require synergy with classical computers. We present some methods where
this quantum-classical interplay is used to enhance machine learning ap-
proaches.

1 Introduction

For more than 80 years, development of digital computers has made exponential
progress in their computing power and has enabled unprecedented economic
and societal changes. Our whole modern way of life depends on these machines
today. However, this growth has decreased in the last decades and is opposed
to the huge demand of novel applications like artificial intelligence. Therefore,
science seeks for novel ways of performing computations efficiently. One of these
ways employs the linear algebra behind quantum physical phenomena to perform
calculations – quantum computing.

In quantum computing, classical bits are replaced by qubits which are the
quantum version of two-level systems. Unlike their classical counterparts, states
of qubits can be in a superposition of their basis states which leads to a quantum
probabilistic behaviour of the calculation. Furthermore, several qubits may be
entangled which means their states directly depend on each other. This leads
to the possibility of using an exponentially growing Hilbert space and a natural
way of performing rotations in this space by unitary gates. However, realizing
algorithms that really make full use of the possibilities of this huge state space is
non-trivial [1, 2] – in particular for the currently available quantum computers
from the noisy intermediate scale quantum (NISQ) era which severely limit both
size and length of quantum programs.

The term quantum machine learning (QML) includes a variety of different
ansaetze that include quantum parts within their pipeline. The idea behind
QML is that the large available state space can lead to a higher expressivity
while using less qubits. Moreover superposition and entanglement could lead
to faster training or the need for less parameters. However, detailed theoretical
analyses are still rare and heuristic results are somewhat limited due to the



limitations of available quantum hardware and the exponential cost scaling for
simulations of quantum computers.

Our article starts with an introduction into learning on quantum computers
including model types and why data reuploading is necessary in many contempo-
rary QML methods. We show a more detailed view on two specific architectures
of QML. Quantum Kernel methods which offer better access to theoretical anal-
ysis and tensor networks (TN) which are used for their application centric ansatz
with a direct correspondence to classical data and models. This enables an in-
tegration into hybrid ML/QML pipelines. However, without suitably encoded
data no pipeline will work. Therefore we look into how to encode classical data
in a quantum state, a main bottleneck for QML. Moreover, we briefly touch
on optimizing ML models, both quantum and classical. In the end, we give an
outlook to the most relevant open questions in QML from our point of view.

2 The Model of Quantum Machine Learning

A standard approach in quantum machine learning is based on embedding a
classical data point into a subspace of the Hilbert space that is spanned by the
qubits of the quantum system under consideration. The resulting quantum state
is then used as an initial state of the learning algorithm. However, the actual
learning, i.e., adjustment of weights, is performed on the classical outputs ob-
tained by measuring the quantum system in its final state. To be more precise,
let X be the space of input data and F denote the Hilbert space of 2n × 2n

Hermitian operators. Let U{ϕ} : X → F be a feature encoding unitary where ϕ
indicates here that there are different choices of feature encoding maps. Exam-
ples of feature encodings are angle encoding and amplitude encoding [3]. The
density matrix describing the n-qubit quantum state encoding the input data
x ∈ X via the feature encoding U(ϕ) is given by

ρ{ϕ}(x) = U{ϕ}(x)|0⟩⟨0|[U{ϕ}(x)]∗

where |0⟩ ∈ H denotes the n-qubit zero state in a chosen basis. Note that H
denotes the Hilbert space of all possible n-qubit quantum states. Moreover, note
that we will omit the dependence on the feature encoding map from here on out.
To measure this state with respect to (w.r.t.) some observable O ∈ F we take
the expectation value of the state w.r.t. the observable

f(x) = Tr[ρ(x)O] = ⟨ρ(x),O⟩F . (1)

This is a linear function in the quantum feature space F ⊂ L(H), which is a
subspace of the space of linear operators on H. Depending on the family of
observables we have a so-called implicit or explicit quantum model [4].

2.1 Explicit quantum model

We define Oθ := V ∗
θ OVθ for a fixed observable O ∈ F and a variational unitary

operator Vθ : H → H with parameter θ ∈ Rm, m ∈ N. Due to the unitary



evolution of quantum states, Vθ is normal, i.e., VθV
∗
θ = V ∗

θ Vθ = 1 for each
fixed θ. Moreover, choosing an observable Oθ for fixed θ amounts to selecting
the vectors ωθ ∈ F accessible to the linear model (1). These models are also
called quantum neural networks [5, 6] since as in classical machine learning the
parameter θ can be used to optimize the output of the model w.r.t. some learning
objective given via some loss function.

2.2 Implicit quantum model

Another way to specify the model (1) is to use the kernel trick and construct a
kernel from the state encoding density matrix. Similar to the classical case, the
idea is to utilize the encoding into a higher dimensional space to decompose the
input data space into separable subspaces [7, 8]. To do this, we consider as an

observable O := Oα,D =
∑K

k=1 αkρ(x
(k)) where D = {x(1), . . . , x(K)} ⊂ X is the

training dataset. Note that usually the model is written in kernel form, i.e.,

fα,D(x) =

K∑
k=1

αkK(x, x(k))

with kernelK(x, x(k)) = Tr[ρ(x)ρ(x(k))]. More details on quantum kernel models
are given in Section 3.1.

2.3 Data reuploading quantum models

By intertwining feature encoding unitaries with the variational unitary operators
defining the trainable parts of the linear model (1) so-called data reuploading
models [9]

fθ(x) = Tr[ρθ(x)Oθ] , x ∈ X , θ ∈ Rm,m ∈ N (2)

can be constructed. Here ρθ(x) := U(x, θ)|0⟩⟨0|U∗(x, θ) ∈ F denotes a hermitian
operator intertwining feature encoding and variational steps, i.e.,

U(x, θ) = U1(x)

L∏
ℓ=2

Vθ,ℓUℓ(x)

with variational unitaries Vθ,ℓ and feature encoding unitaries Uℓ(x) for some
x ∈ X . The observable in (2) is given as Oθ = V ∗

θ,1OVθ,1 for some observable
O ∈ F . Note that in general the feature encoding unitaries and the variational
unitaries do not commute, i.e.,

[Uℓ(x), Vθ,ℓ′ ] = Uℓ(x)Vθ,ℓ′ − Vθ,ℓ′Uℓ(x) ̸= 0 , ∀ℓ, ℓ′ ∈ {1, . . . , L} .

Hence, there is no straightforward representation as an explicit model with the
same amount of qubits. However it is possible to find a mapping from data
reuploading models to explicit models if additional ancilla qubits are added [4].



The encoding most often used for data reuploading models is parametrized
Pauli rotational encoding. It is a form of time evolution encoding where the
Hamiltonian is made up of 2× 2 hermitian matrices acting on each single qubit
separately. Any of these matrices H can be decomposed into

H = α0σ
0 +

∑
k∈{x,y,z}

αkσ
k

where α ∈ R4 is a H-dependent coefficient and σi are the usual Pauli matrices
with σ0 ≡ 1R2×2 , the 2 × 2 unit matrix. Hence a scalar data point xj ∈ [0, 2π)
can be associated with the angle of a parametrized Pauli rotation via the single
qubit encoding

U(xj) = e−iHxj = exp(−i
[
α0σ

0 + αxσ
x + αyσ

y + αzσ
z
]
xj) .

For arbitrary multidimensional data x ∈ X a suitable scaling and a parallel data
encoding strategy needs to be applied.

The model function of a data re-uploading model, can be expressed as a
partial Fourier series. The nomenclature partial indicates that only a subset of
the Fourier coefficients is nonzero. The integer frequency spectrum for which the
Fourier coefficients are nonzero Ω ⊂ ZN is determined by the eigenvalues of the
data encoding gates used in the encoding blocks. The remaining architecture,
i.e. the variational blocks and the observable that defines the readout operation,
characterize the coefficients cω that a quantum model can realize. The quantum
model can thus be represented as [10]:

fθ(x) =
∑
ω∈Ω

cω(θ)e
iωx .

Note that the expressivity of the model is directly visible from the partial Fourier
representation.

In general, the expressivity of a given quantum learning model can be de-
termined by estimating the randomness of states generated from the model in
terms of the Kullback-Leibler (KL) divergence [11, 12]. In particular, there is
a correspondence between the gradient of the cost landscape (trainability) and
the expressibility of the quantum model [13].

3 Quantum Machine Learning Methods

Even more important than the expressivity of a quantum model is its ability
to generalize to unseen data. Generalization has for example been investigated
from a statistical learning theory perspective with the help of bounds based on
the (quantum) Fisher information matrix [14, 15]. However, since the implicit
(kernel) perspective is more amenable to theoretical analysis a lot of work on
generalization capabilities takes this path.



3.1 Quantum Kernel Methods

From the view point of kernels, it was shown that generalization is impossible
if the largest eigenvalue of the kernel integral operator is small and that gen-
eralization is unlikely if the rank of the kernel matrix is large [16, 17]. This
points to the case, that learning is impossible for models with a large number
of qubits unless the amount of training data provided grows exponentially with
qubit count. Nevertheless, using a hyperparameter called the kernel bandwidth
it has been shown that learning is possible even for high numbers of qubits if
the kernel and the dataset are well aligned [18, 19].

Based on this an analytical and numerical investigation of the influence of
expressivity on the generalization ability of quantum kernel models is performed
in the contribution Gross et. al. [20]. In particular, a parallel data encod-
ing strategy is used and it is shown, that from this a simple universal form of
quantum kernels emerges. Moreover, using a qubit-dependent data re-scaling
schemes, it is possible to exponentially vary the spectral content of the kernel
and thereby control its simplicity bias.

Hence by analysing the respective kernel a lot of information on the gener-
alization capabilities of the underlying quantum model can be gained.

3.2 Data Encoding of Images

For machine learning classical images are often used as inputs. Images contain
large amounts of information that have to be encoded. The encoding of classi-
cal data is a critical step for QML run time and expressivity. Especially since
most quantum machine learning algorithms only return probabilistic results,
the whole routine, including state preparation and measurement, may have to
be repeated several times [21]. A Flexible Representation of Quantum Images
(FRQI) [22] was proposed as a method to encode Grey-value images into quan-
tum computers. The intensity information and their corresponding position are
encoded into a normalized quantum state representation of the image. Later the
Multi-Channel representation for Quantum Images (MCQI) [23] was proposed
as a generalization for RGB images.

Given a 2n × 2n grey-valued image, using FRQI it can be encoded as:

|I(θ)⟩FRQI =
1

2n

22n−1∑
i=0

(cos θi|0⟩+ sin θi|1⟩) |i⟩

with θi ∈ [0, π2 ], i = 0, 1, . . . 22n−1 the re-scaled pixel intensities and by selecting
an ordering of pixels from the 2D structure of the image, e.g. going through the
image following a snake-like pattern. The representation consist of two parts, the
computational basis quantum states |i⟩ represent the position of each pixel and
cos θi|0⟩+ sin θi|1⟩ encodes their respective intensity information. The resulting
state is then normalized.



MCQI expands the encoding of intensities to RGB images with:

|Ci
RGB⟩ =cos θiR|000⟩+ cos θiG|001⟩+ cos θiB |010⟩+ sin θiR|100⟩

+ sin θiG|101⟩+ sin θiB |110⟩+ cos 0|110⟩+ sin 0|111⟩

where {θiR, θiB , θiG} ∈ [0, π2 ] are three angles encoding the color value of the R,G,
and B channels of the i-th pixel. For a chosen ordering of pixels the image is
then encoded as

|I(θ)⟩MCQI =
1

2n + 1

22n−1∑
i=0

|Ci
RGB⟩|i⟩ .

A special kind of images generalising RGB channels to several emission spec-
tra are so called Hyperspectral images. These images have a high dimensional
data structure, with vectors of multiple intensities per pixel. Usually up to
hundreds of spectral bands are used. Let x ∈ R2n be a normalized version of
such a vector, possibly padded with zeros. A qubit-efficient way to encode this
vector into a quantum state is amplitude encoding (AE). It encodes classical
information into quantum state amplitudes

x =
(
x1 · · · x2n

)T → |ψx⟩ =
2n∑
j=1

xj |j⟩

where |j⟩ denotes the j-th basis state of the n-qubit quantum system.
Amplitude encoding uses a low number of qubits to store the classical infor-

mation at the expense of increasing the complexity of the encoding process [21].
Fischbach et. al. [24] proposed to combine AE with MCQI by replacing

|Ci
RGB⟩ with |ψx⟩, thus enabling the encoding of hyperspectral images into a

quantum state.
All three encoding methods require multi-controlled gates and deep circuit to

realize the encoding. A novel way to alleviate this constraints is by using tensor
networks to compress and represent the quantum states prior to encoding them
into a circuit.

3.3 Quantum Tensor Networks

Tensor networks (TNs) originate as a method from quantum many body physics
to reduce the numerical effort needed to describe quantum systems. The idea
is to decompose large tensors – a generalization of matrices – into a network of
smaller tensors. This approach significantly reduces storage size and computa-
tion demands when the chosen network layout fits to the underlying structure
of the quantum system or machine learning problem and therefore removes re-
dundancies. A major field of use for tensor networks in quantum computing is
the classical simulation of circuits – the most efficient methods today make use
of TNs [25].

TNs can also be used for machine learning [26]. In particular, MPS have
been employed as convolutional layers together with neural pooling. The main
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Fig. 1: Mapping from isometric tensors to unitary quantum gates. Whether
a bond α, β is mapped to an incoming or outgoing qubit bundle, depends on
whether the tensor is given in right or left isometric form. The free bonds
i are represented by outgoing qubits. Adjoining a tensor flips its directions.
Qubit preservation is taken into account by adding additional dummy qubits or
discarding left over ones. Adapted from [28].

advantage of tensor network based approaches is their intrinsic locality and struc-
ture. This allows for very efficient optimization with dedicated approaches like
density matrix renormalization group (DMRG) approaches operating on single
tensor nodes. By limiting the sizes of the bonds, i.e. the number of connec-
tions or the bond dimension, between different nodes, a straight forward way of
approximating the TN structure is available. However, choosing the right tenso-
rial layout suiting the problem at hand is critical for achieving good accuracies.
Furthermore, their origin as a numeric method for quantum many body systems
leads to an intrinsic linear behaviour of TNs – integrating nonlinearities that
are essential to modern ML approaches must be taken care of outside the tensor
network itself.

Instead of using tensor networks as a trainable ansatz for a machine learning
models, one can compress already trained networks since they are representing –
very complex – tensorial structures. When limiting the bond dimensions, lossy
approximations are possible. Jahromi et. al. [27] provide an investigation on
how to use tensor networks to reduce the size of LLMs by a factor of 70% with
only a minimal reduction in accuracy.

When using a quantum computer, the strict linearity of TNs is a major
advantage: Mapping classical TNs to a quantum computer is straight forward
as shown in Figure 1. The main difference is that classical tensor networks may
make use of any kind of tensor while quantum nodes are restricted to unitary
nodes. Standard TN manipulation methods like singular value decomposition
produce already isometric tensors which can be padded with the tensors’ kernels
to get a unitary object [28]. However, DMRG does not preserve unitarity of
tensors. This means, one needs to project to a unitary or enforce this behaviour
as boundary condition as shown by Jäger et. al. [29].

A direct application of this classical–quantum mapping for TNs is related to
the data encoding bottleneck mentioned in the Introduction since TNs can also
be used to compressed the data necessary for quantum machine learning. The
resulting object can be interpreted as a quantum state and even mapped to a
two-qubit gate representation for a NISQ era quantum computer with reasonable
accuracy [30]. This may be seen as a classical feature selection stage.



3.4 Quantum Computing and Optimizing ML

The feature selection process is a necessary step in any supervised machine learn-
ing pipelines. One can interpret these features as random variables in the model
and use mutual information to quantify how much information can be gained
from one of the features about any of the other ones. Thus mutual informa-
tion can be used to optimise the feature selection and obtain a stable solution
with reasonable usage of resources for the considered machine learning prob-
lem [31]. Assuming conditional independence the optimal feature combination
can be phrased as a QUBO problem. Such problems are at the heart of many
applications for example in finance, traffic management and machine learning.
So-called annealing algorithms are a way to obtain a solution [32]. In contrast
to simulated annealing which uses thermal fluctuations, quantum annealing em-
ploys quantum fluctuations (tunneling) to escape local minima and find the true
ground state of the considered system by employing a special time evolution. For
more details on quantum annealing and its application to optimization problems
we refer to [33].

Pranjić et. al. [34] demonstrate that a best-fitting feature combinations can
be obtained by using a hybrid approach that uses classical methods together with
quantum annealing for solving the respective QUBOs. Their Mutual Information
Quadratic Unconstrained Binary Optimization (MIQUBO) approach improves
the prediction of machine learning models for datasets which have a small mutual
information concentration w.r.t. the chosen feature that should be predicted.

4 Outlook

We have outlined, that there are promising new approaches in the field of QML.
Quantum, Quantum Inspired and Hybrid Machine Learning techniques are gain-
ing more and more track and might overcome some of the shortcomings of clas-
sical approaches, mainly on the (energy) efficiency and training effort side in
the future. However, there are still major challenges to overcome. The most
prominent is the unavailability of capable quantum computers. Noise on current
devices severely limits the size of algorithms which also sets a hard limit on
the complexity of data that can be evaluated. In addition, as most existing ap-
proaches are hybrid quantum-classical algorithms with many handovers, a tight
interconnection between quantum and classical CPU-/GPU-based hardware is
essential for making QML perform well.

On the software side, there are, in our opinion, three major open issues. En-
coding data into a quantum system is notoriously hard and needs more suitable
preprocessing methods. Moreover, there is not much experience with building
well performing algorithms similar to the heuristic approach in classical ma-
chine learning. Finally, theoretical insights on the inner functioning of quantum
algorithms is even more scarce than in classical machine learning.

Still, there are several near-term applications. First, quantum-inspired tech-
niques already improve performance of machine learning, and also quantum sim-
ulations can benefit from the quantum–classical interplay. Second, deploying



quantum machine learning directly to quantum data will circumvent the encod-
ing bottleneck and therefore offers a more straightforward approach to quantum
data evaluation.

Overall, quantum machine learning presents itself as a promising approach,
that could have major impact on developing a solution to the current efficiency
problem of large machine learning models.
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network simulation of ibm’s largest quantum processors. Phys. Rev. Res., 6:013326, Mar
2024.

[26] William Huggins, Piyush Patil, Bradley Mitchell, K Birgitta Whaley, and E Miles
Stoudenmire. Towards quantum machine learning with tensor networks. Quantum Sci-
ence and Technology, 4(2):024001, January 2019.

[27] Saeed Jahromi, Uygar Kurt, Sukhi Singh, David Montero, Borja Aizpurua Altuna, and
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