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Abstract. Data imbalance can take various forms, such as uneven class
distributions in the dataset. Solutions like data augmentation, sampling
techniques and weighted loss functions are commonly used to address this
issue. However, in segmentation tasks, an additional type of imbalance
may occur at the pixel-level, with most of them belonging to the back-
ground class. This work introduces Mask-Aware Cropping (MAC), a tech-
nique to reduce pixel-level imbalance by cropping image regions containing
key information about the minority class.

1 Introduction

Data imbalance is a common issue in deep learning applications [1]. Its most
common manifestation stands in an asymmetry in the class distributions where
one or more classes are underrepresented in the data. Several solutions exist
to mitigate this issue, like data augmentation, data sampling, or the use of a
weighted loss function. However, when dealing with segmentation tasks, an-
other form of data imbalance can occur at the pixel-level, where most of them
often belong to the background class [2]. This imbalance can lead to models
that are biased towards predicting background instead of the object of interest.
Furthermore, random cropping [1], a common data augmentation method, can
inadvertently exacerbate this pixel-level class imbalance by cropping regions with
fewer information regarding the non-background class. This imbalance cannot
be solved with common techniques because they do not alter the proportion of
mask size relative to the overall image.

To address the challenge of pixel-level imbalance in masks, we propose Mask-
Aware Cropping (MAC), a novel data augmentation technique designed to han-
dle class imbalance in binary segmentation tasks by performing pixel oversam-
pling for the minority class. MAC selectively crops specific regions of images to
ensure that the cropped image is sufficiently informative regarding the minor-
ity class. We validate the effectiveness of MAC by comparing its performance
against other state-of-the-art methods to deal with class imbalance. Although
this issue is sometimes neglected by practitioners, we show that MAC can im-
prove performance when data is strongly imbalanced, and is otherwise at least
able to achieve performances similar to those of other methods.

The rest of the paper is structured as follows. Section 2 presents the related
works on dealing with class imbalance. Section 3 details our proposed MAC
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method, while the experimental setup, results and discussion are presented in
Section 4. Finally, Section 5 presents the conclusions of this study.

2 Related Works

There are two main ways to mitigate class imbalance regardless of the task that
should be performed (classification or segmentation) [1]: (i) adding penalization
terms in the loss and (ii) modifying the data distribution using sub/oversampling
or data augmentation. The first solution aims at penalizing errors on the mi-
nority class by increasing its effect on the loss. One can cite the focal loss [3]
or the work of Khan et al. [4] who use a cost-sensitive deep neural network that
automatically sets a class-dependent weight based on the distribution of the
data. For the second category of solutions, one can cite the Synthetic Minority
Over-Sampling TEchnique (SMOTE) [5] and its many variants.

For segmentation tasks in particular, another type of class imbalance, often
neglected by practitioners, occurs at the pixel-level. Indeed, for many segmen-
tation tasks, most of the pixels in the dataset belong to the background class.
To solve this issue, Kochkarev et al. [6] introduced a technique to deal with
imbalanced image multi-class segmentation tasks using probabilistic cropping
method. Unfortunately, their proposed testing of the method contains flaws
such as evaluation on the training data only. Yet, to allow for a fair comparison
with MAC (our method), we included their technique in the experimental setup.
Another technique by Zaridis et al. [7] uses a pre-processing by training a model
to detect the region of interest in the image, before training a second model on
the segmentation task. This approach is cumbersome since it involves training
two models, and leaves no control over the cropping strategy.

3 Methodology

We propose Mask-Aware Cropping (MAC), a novel data augmentation technique
specifically designed to handle pixel-level class imbalance in binary segmentation
by extracting sub-regions of the masks and images (i.e., the crops). With MAC,
masks and images are cropped such that at least a certain ratio of the pixels
contain the minority class as illustrated in Figure 1. This technique relies on
three constraints that are controlled by a set of three hyperparameters.

The first of the three hyperparameters is the minimum ratio 0 ≤ ρ ≤ 1 of
target class pixels required within a crop to ensure that the crop is informative
enough about the minority class. If the original image I has width Iw and height
Ih, and C(x,y) defines the mask corresponding to a crop in that image I of size
Cw × Ch, ρ = 1

CwCh

∑Cw,Ch

i,j=1 C(i,j). The second is the stride σ when sliding a
window across the image and mask to test the different possibilities for cropping.
The third is the frequency τ at which crops from the MAC-coordinates list (see
Algorithm 1) are sampled, balancing between background and target samples.

The MAC Algorithm extracts the MAC-coordinates of all image crops having
a minimum ratio of non-background above ρ (i.e., valid pixels), moving the



cropping window with a stride of σ. During training, one can randomly sample
cropped images among the MAC-coordinates list, at a frequency defined by τ .
Random cropping is applied at a frequency 1 − τ , or when the image contains
no valid pixels.

Algorithm 1 MAC Algorithm

Require: ρ ∈ [0, 1] and (Ch, Cw) ≤ (Ih, Iw)
Ensure: List of mac coordinates (x, y) from valid crops in I
1: function GetMacCoordinates(I, (Ch, Cw), σ, ρ)
2: Initialize mac coordinates← []
3: (Ih, Iw)← shape of I
4: for y = 0 to Ih − Ch step σ do
5: for x = 0 to Iw − Cw step σ do
6: crop← I[y : y + Ch, x : x+ Cw]

7: ratio← sum(crop̸=0)
size(crop)

8: if ratio ≥ ρ then
9: Append (x, y) to mac coordinates

10: end if
11: end for
12: end for
13: return mac coordinates
14: end function

(i)

(ii)

Fig. 1: Example of cropped image masks using random cropping from a gastroin-
testinal polyp dataset, Kvasir-SEG [8]: (i) is informative about the foreground
while (ii) contains few foreground pixels and almost only background pixels.

4 Experimental Setup

This section explains the chosen architecture for all the experiments, then it
presents the datasets and hyper-parameters selection, before discussing the con-
sidered performance metrics and comparison methods.



4.1 U-Net Architecture

To perform the segmentation tasks and assess the ability of MAC to address class
imbalance in segmentation, a standard U-Net [9] with a fixed architecture made
of 1,080,929 parameters is used. The U-Net is made of two convolutional layers
followed by 4 down sampling (with max pooling) and 4 up scaling (with bilinear
upsampling) blocks, and its convolutions use a kernel size of 3× 3, are followed
by batch normalization layers and ReLU activation functions throughout the
network. The first convolutional layer takes 224×224 input images and the down
sampling blocks are made of 32, 64, 128, and 256 filters. Finally, a convolutional
layer reduces the number of channels to one to perform the binary segmentation.

4.2 Datasets

Three well-known public datasets are used to assess the performance of MAC
on binary segmentation. These datasets vary in size and show different levels of
pixel-level class imbalance. This allows for a thorough evaluation of how MAC
performs across datasets with diverse characteristics in terms of both scale and
imbalance. First, URDE [10] is a urban road defects dataset made of 7, 000
images of 1024×1024 pixels. The dataset has only 3.0% of mask pixels containing
items of interest. Second, Kvasir-SEG [8] is a gastrointestinal polyp datasets
with 1,000 images varying in size from 625 × 513 pixels to 1920 × 1072 pixels.
On average, 15.8% of the mask pixels contain polyps. Third, HAM10000 [11] is
a skin lesion dataset that contains 10, 015 images of 800× 600 pixels where 30%
of the pixels show a lesion.

4.3 Hyper-parameters

Several configurations are tested for the three datasets. Those configurations
are the different combinations of the following choices for the meta-parameters
of MAC: σ ∈ {16, 32, 64}, τ ∈ {2, 3, 5} and ρ ∈ {0.25, 0.5, 0.75}. In addition, for
all the three datasets, images are initially resized to 448×448 pixels. The model
is trained for 200 epochs with a batch size of 32 using the AdamW optimizer
with a learning rate of 0.001, and a reduce on plateau scheduler that divides the
learning rate by 3 every 10 epochs without any improvement.

4.4 Performance Assessment

The performance of MAC in binary segmentation is assessed through five per-
formance metrics, namely the Dice Score (DS), Intersection over Union (IoU),
precision, recall, and accuracy. This performance is compared against several
setups that only differ in how they sample data: (i) No Cropping (NC) is per-
formed on the images, (ii) Random Cropping (RC) as usually done in standard
pipelines, and (iii) Probabilistic Cropping (PC), an implementation close to the
method by Kochkarev et al. [6] (see Section 2) that draws masks according to
a 2D probability density function derived from the 2D distance of the pixels
from the background. In addition, the use of a weighted loss function is also



considered for both NC (NCW) and RC (RCW) as it is a common solution for
dealing with imbalanced data (see Section 2).

5 Experimental Results

The mean metrics from the 5-fold cross-validation are presented in Table 1 for
each of the six configurations presented in Section 4 with 95% Confidence Interval
(CI). First, the best MAC model uses ρ = 0.5, τ = 3 and σ = 16 for the URDE
dataset. Second, it uses ρ = 0.25, τ = 5 and σ = 16 for the kvasir-SEG dataset.
Third, it uses ρ = 0.5, τ = 5 and σ = 16 for the HAM10000 dataset. The results
show an outperformance by MAC for binary segmentation on Kvasir-SEG and
URDE, indicated by higher DS and IoU. All other techniques have much lower
DS and IoU. The precision of MAC is either equal or slightly below that of RC,
indicating that MACmakes slightly more false positive than RC. Moreover, recall
is much higher for RCW and NCW, but those methods yield poor DS, IoU and
precision. This means that adding weights to the loss results in over prediction
of mask pixels against background ones. For the less imbalanced dataset (30%
of its pixels that are not background), HAM10000, DS and IoU show that MAC
is comparable but slightly below than RC and PC. However, MAC has a higher
precision. This shows that MAC works best for stronger imbalance in the data,
and has comparable results when the imbalance is lower.

6 Conclusion

In this paper, we propose a new cropping technique, Mask-Aware Cropping
(MAC) that effectively addresses the class imbalance issue that can occur at the
pixel-level in binary segmentation. Indeed, for many segmentation tasks, most
pixels in the masks often belong to the background class. MAC is based on the
definition of new hyperparameters—ρ, σ, and τ—that control the cropping pro-
cess, offering flexibility over the data augmentation pipeline. The performance of
MAC is assessed on three datasets featuring different levels of imbalance, image
size and nature. Out of the three, its outperformance is demonstrated on two
most imbalanced datasets, URDE [10] and kvasir-SEG [8], with 3% and 16%
of the pixels representing the foreground, respectively. On the less imbalanced
dataset, HAM10000 [11] (30% pixel-level imbalance), MAC achieves similar per-
formance than the best performing model. Future work will expand MAC to
semantic and instance segmentation tasks with more than one class.
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