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Abstract. This study presents a novel approach for classifying oily
or cream-like substances using diffraction data captured on a smartphone
camera, applied specifically to assessing engine oil quality. Utilising the
COMPOLYTICS® TapCorder approach, optical diffraction patterns were
analysed with a tailored feature extraction method. The performance
of three machine learning paradigms — Multilayer Perceptrons (MLP),
Learning Vector Quantization (LVQ), and Radial Basis Function Net-
works (RBFN) — was analysed in classifying new and used oil samples.
MLP achieved the highest accuracy, while LVQ required the least compu-
tation time, highlighting trade-offs relevant for consumer-focused applica-
tions. This work clearly demonstrates the feasibility of accessible, low-cost
chemical substance analysis via smartphone-based systems.

1 Introduction

The qualitative and quantitative analyses of chemical substances are typically
conducted using suitable wet chemical methods. However, these methods are
not real-time capable, involve significant investment and operating costs, and
are not readily accessible to consumers. Additionally, the process often results
in the consumption of the available sample.

The use of smartphones beyond pure communication applications for use
as measuring devices / testers makes the determination of ingredients cheaper
and generally suitable for consumers. The COMPOLYTICS® TapCorder [1]
is a novel data acquisition tool for capturing optical characteristics of oily or
cream-like substances directly via smartphone. By utilizing geometric optics, it
measures diffraction effects on a thin film sample applied to the camera lens. This
method, based on optimally designed measurement patterns, enables precise
data collection of texture and diffraction features. For some applications, the
use of the Siemens star has proven to be the optimal measurement pattern, a
circle divided into sectors of alternating contrasting colours (typically black and
white), whose radially symmetrical spatial frequencies increase steadily towards
the centre. By selecting the number of sectors and thus the distance between
them, the value range of the spatial frequencies can be easily parametrised.

Since the relationship between the image properties modulated by the grease
film applied on the lens and the qualitative and quantitative properties of the
measurement sample defined in the context of the measurement task is typically
not given analytically, machine learning methods are used for this modelling. In



order to enable data processing within a consumer app as well, the model must
not only be sufficiently precise and robust, but also optimised in terms of the
required computing time and resources.

This set-up, following the principle of a soft sensor, consisting of an inno-
vatively implemented physical measurement principle and tailored statistical
modelling, opens up numerous application perspectives. In the context of an
application for assessing the deterioration of engine oil, this paper illustrates
the extraction of application-specific optimised features from an extensive image
data set and the use of three different machine learning concepts based on an
exemplary classification task of new vs. used oil. For illustrative reasons, a third
class of ’clean’ lens was introduced.

2 Data Acquisition and Feature Engineering

After the application of the available oil samples to the camera lens, the image
data was acquired. All images were taken with a regular smartphone, with the
Siemens star (36 spokes) positioned in the background (approx. 20 cm distance).
Two sets of image data were acquired using two separate kinds of oil, namely
new and used oil. Additionally, images with clean lens, also with the Siemens
star in the background, were acquired. Ultimately, about 100 images of each
type were obtained. To ensure balanced classes, the number of images per class
was intentionally kept the same. All images were orientation corrected and
cropped to a uniform size of 1850 x 1850 pixels at 8 bits, and saved as lossless
Portable Network Graphics (PNG) files. The complete data set is available for
download [2].

Histogram features: Corresponding to the distinct black and white fields of
the Siemens star, a bimodal histogram distribution was obtained, modulated
by the properties of the oil composition. The initial features were extracted
by fitting both a generic Gaussian Mixture Model (GMM), yielding mean and
covariance per distribution, and a better shape approximating Weibull Mixture
Model (WMM), yielding alpha and beta per distribution.

Texture features: Further relevant features were extracted, such as Shan-
non entropy and grey-level co-occurrence matrix yielding contrast, dissimilarity,
homogeneity, energy, correlation, and angular second moment (ASM).

Combining both feature domains, the initial dataset had 27 features. Twelve
highly correlated features with a correlation of approximately 0.99 were removed
from the dataset. A Pearson correlation matrix of the 15 final feature set is shown
(see Fig. 1).

Before training the models, an exploratory data analysis was carried out
to visualise the general class separability using a Linear Discriminant Analysis
(LDA), see Fig. 2 for details. This enabled more effective discrimination between
classes and facilitated learning from the features due to class differences.
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Fig. 1: Correlation matrix of the selected 15 features presented as heat map. In
principle, the lower the correlation between a feature and several other features,
the more it contributes to the overall feature set.

3 Machine Learning Models

In selecting neural network paradigms specifically for classification tasks, it is
essential to include conceptually distinct and widely used models that are partic-
ularly well-suited or even ideally adapted for this purpose. This study therefore
focuses on three paradigms, each representing a unique approach to classification:
separator-based Multilayer Perceptrons (MLPs) [3, 4], which rely on learned
boundaries between classes; Radial Basis Function Networks (RBFNs) [5, 6],
which employ radial basis functions to capture localised patterns in data; and
prototype-based Learning Vector Quantization (LVQ) [7, 8], which uses represen-
tative prototypes to categorise input utilising a specific implementation from [9].
Together, these paradigms provide a comprehensive exploration of classification
techniques within neural network architectures.

As a common preprocessing step, the features were standardised using z-score
normalisation. Labels were encoded using one-hot encoding to train MLP and
RBFN, and integer encoding was used to train LVQ. All models were trained
using ten-fold cross-validation, with one fold for validation and the rest for train-
ing. To ensure robust results, each cross-validation step was repeated ten times.
Mean and standard deviation (SD) of training and validation accuracy over
repetitions were calculated. Each paradigm’s training set-up started with the
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Fig. 2: All samples with their class affiliations, represented in two low-
dimensional components using Linear Discriminant Analysis (LDA). The sam-
ples indicate the presence of oil: blue for new, red for used, yellow for absent.
The no-oil class is clearly separated from the other two, whereas new and used
oil are also separable. The within-class variability of the no-oil samples is clearly
smaller.

minimum possible design for the architecture type. The complexity of the design
was increased until it met our desired validation accuracy target of 95%. The
mean computation time per repetition was also recorded.

For the MLP model, the Nguyen-Widrow method was applied to initialise
weights, and the Levenberg-Marquardt (LM) optimization technique [10] was
used for training. The hidden layer employed a hyperbolic tangent activation
function, while the output layer used a linear activation function, with mean
squared error (MSE) as the loss metric. In the RBFN model, the least mean
square error (LMSE) algorithm provided the optimisation method. The hid-
den layer utilised radial basis functions as the activation function, while the
output layer was linear, with MSE again used as the loss function. For LVQ,
class means served as the initial prototypes, and the Broyden-Fletcher-Goldfarb-
Shanno (BFGS) algorithm [11] was used for optimisation.



4 Results

The results are summarised in Table 1, which illustrates the variability in perfor-
mance across network architectures and configurations, highlighting the trade-
offs in accuracy and computational efficiency.

Training: The minimal design and satisfactory design per architecture type
are reported here. The MLP with 15-5-3 architecture demonstrated the highest
level of validation accuracy. It achieves a validation accuracy of 98.2 % with
a relatively short training period of 43 ms. The LVQ prototype, comprising a
minimal possible design with one prototype per class, already successfully passes
the validation criteria with an accuracy of 95 %. It is unnecessary to increase
the complexity of the LVQ; however, a considerably longer training period of 269
ms is required. The RBFN with 16 RBF neurons satisfies the validation criteria
but requires the longest training time of 519 ms.

Recall: In terms of a potential user application, the computational time
required for a newly acquired image of the test pattern (recall) is definitely
more important. The LVQ has the lowest mean validation time per sample, at
1.6 ps. In comparison, the MLP requires approximately 50 times and the RBF
approximately 70 times the validation time of the LVQ.

Apart from the mean value for each result in Table 1, the standard deviation
was also calculated to assess the variability in training accuracy due to differ-
ent random initializations, the consistency of recall results. Additionally, mean
computation time of network paradigms considered was accessed when process-
ing new samples. With regard to the calculation of computation time, feature
extraction was not considered here.

Accuracy Computation Time
Mean SD Mean SD Mean

Type Design Train Validation Train | Validation
MLP 1-3 0.867 | 0.010 0.659 | 0.035 43 ms 57.3 us
MLP 5-3 0.994 | 0.002 0.982 | 0.015 43 ms 51.5 us
LvQ 1-1-1 0.971 | 0.006 0.950 | 0.042 | 269 ms 1.6 ps
RBFN | 1-3 0.676 | 10716 0.676 | 107'% | 23 ms 70.1 ps
RBFN 16-3 0.960 | 0.005 0.950 | 0.039 | 519 ms 70.4 ps

Table 1: Summary of accuracy and computation time results for the considered
neural network paradigms and configurations (MLP, LVQ, and RBFN). For each
model, mean and standard deviation (SD) values are reported for both training
and validation accuracy, as well as the mean computation time required for
training and validation phases. For MLP and RBFN, design means [the number
of neurons in hidden layer - number of neurons in output layer|, and for LVQ
the number of prototypes per class.



5 Conclusion and Future Work

The purpose of this study is to evaluate the technical feasibility of the underlying
use case in accordance with the patent. It uses a simple dataset to determine
whether classification is possible on such data. It also highlights application-
specific feature engineering required in this scenario.

The comparative analysis of MLP, LVQ, and RBFN models demonstrates dis-
tinct strengths and limitations across classification accuracy and computational
efficiency, with MLP achieving high validation accuracy and showing minimal
variability at the same time compared to other methods achieving the desired
accuracy. RBFN model shows minimal variability. These findings suggest that
the choice of a suitable neural network paradigm in a subsequent consumer
application should consider not only accuracy requirements but also the spe-
cific computational constraints of the application, particularly in real-time or
resource-limited settings of a smartphone app. Moreover, in terms of inter-
pretability and potential model size, prototype-based neural networks, such as
LVQ, generally offer interesting perspectives [12].

In the future, the complexity of the data will need to be increased by increas-
ing the number of classes (i.e., oil types and conditions), potentially the number
of features, and also the number of images.
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