
Multiclass Adaptive Subspace Learning

Peter Preinesberger1, Maximilian Münch1,2,3 and Frank-Michael Schleif1 *

1- Techn. Univ. of Appl. Sc. Würzburg-Schweinfurt, Würzburg, Germany
2- Dept. of CS, University of Groningen, Groningen, Netherlands

3- Center for Artificial Intelligence and Robotics, Würzburg, Germany

Abstract. In modern data analysis, there is an increasing trend towards the integra-
tion of information across diverse input formats and perspectives. If the available
data is not given in large quantities deep learning is in general impractical. The
recently introduced Adaptive Subspace Kernel Fusion (ASKF) technique provides
an efficient solution for binary classification, facilitating the effective integration
of diverse views throughout the learning process. In this paper, we extend ASKF
by employing a vector-labeled multi-class model, eliminating the need for multi-
ple individual models typically required in conventional one-vs-rest or one-vs-one
approaches. We also evaluated the effect of using GPU-based numerical solvers,
optimizing our problem formulation and the generated code for better efficiency.
The approach is evaluated on various kernel functions, highlighting our methods
ability of robustly dealing with multi-view data.

1 Introduction

In recent years, machine learning has become a pivotal component of various industries,
including healthcare [1], multimedia [2], and environmental sciences [3]. These do-
mains often derive heterogeneous data from multiple sources, capturing objects across
multiple modalities from different perspectives. Learning classifiers from such hetero-
geneous data poses significant challenges due to the data being represented by differing
structures, such as text, graphs, and time series [4]. Whereas most machine learning
challenges today are tackled using deep learning [5], this approach is limited by the
need for large amounts of data across the different modalities. Considering this re-
striction, proximity-based learning offers an effective alternative, having shown notable
results for non-vectorial data compared to deep learning embeddings [6, 4, 7].

The recently proposed Adaptive Subspace Kernel Fusion (ASKF) [8] additionally
leverages the spectral properties of multiple proximity functions to create a information-
rich representation across multiple modalities, which has shown promising results for
binary classification tasks. As a main contribution we propose extending ASKF us-
ing a vector-labeled multi-class strategy to reduce model complexity and enhance effi-
ciency. Additionally we demonstrate the suitability of our approach for GPU-enabled
numerical solvers. Our experimental evaluation, conducted on simulated and bench-
mark datasets with diverse kernel matrix parameterizations that represent distinct data
modalities, demonstrates the efficacy of our method in a controlled setting.

2 Background

Consider a collection of N objects X = {xi}N
i=1 in an input space X . Each object xi

is described in M different modalities For each modality m, we assume a proximity
*peter.preinesberger@study.thws.de, {maximilian.muench,frank-michael.schleif}@thws.de

function km which processes pairs of points xm
i and xm

j . These proximity functions
measure either similarity or dissimilarity, constructing respective matrices.

Kernel methods leverage the reproducing kernel Hilbert space (RKHS), induced by
a positive semi-definite (PSD) kernel function [9]. Each kernel function km : X m ×
X m → R is defined as km(xm

i ,xm
j) = ⟨φ(xm

i),φ(xm
j)⟩H , where φ : X → H maps the in-

put data into a high-dimensional Hilbert space H . The resulting kernel matrix Km

has entries Km
i, j = km(xm

i ,xm
j). Due to the potential variance in the range of the scores

calculated by different kernel functions, it is crucial to normalize the kernel matrices:

Km
i, j =

km(xm
i ,x

m
j)√

km(xm
i ,x

m
i)·km(xm

j ,x
m
j)

. As noted in [10], certain kernel functions become non-

positive semi-definite (non-psd) as a result of this normalization. Non-psd kernel func-
tions are more prevalent than anticipated and require appropriate attention [10, 11]. 1

2.1 Learning with Multiple Kernel Functions

Learning classification models from multi-modal, heterogeneous data is complex as it
requires integrating information from various sources to achieve good generalization.

By combining multiple base kernels into a single, information-rich kernel matrix,
MKL in the past has shown great performance for processing and integrating diverse
data representations[13, 14, 15]. However, traditional MKL methods often rely on lin-
ear combinations of kernels, require the solving of expensive optimization problems and
demand psd kernel functions. ASKF addressed these limitations by handling non-PSD
input kernel matrices and leveraging spectral properties to uncover hidden information
not accessible by a linear weighting of kernels.

3 Methodology

3.1 Adaptive Subspace Kernel Fusion

For all kernel matrices, ASKF makes use of an eigen-decomposition: Km = QmΛmQT
m,

with Λm containing the eigenvalues and Qm the corresponding eigenvectors of Km.
ASKF makes use of the top t dominating (absolute) eigenvalues and stores their re-
spective eigenvectors as Q̃ as well as their original (potentially negative) eigenvalues
as Λ̃. For further details and an in-depth analysis of ASKF, we refer the reader to [8].
In ASKF-SVM the eigenvectors Q̃ of the selected eigenvalues are used, but do not
retain the original eigenvalues (and not even parts of them). Instead, the eigenvalues
are treated as learning parameters integrated into an optimization problem (see Eq. 1).
Therefore, we extend the classical SVM by additional regularization terms and con-
straints:

min
α,Λ̃

1
2
αT YQ̃Λ̃Q̃T︸ ︷︷ ︸

K̃

Yα−1Tα−β ·1T Λ̃1︸ ︷︷ ︸
R1

+γ · ||Q̃ΛQ̃T − Q̃Λ̃Q̃T ||∗︸ ︷︷ ︸
R2

subject to 0 ≤ αi ≤C and ∑
i

yiαi = 0, i = 1, . . . ,N; C ∈ R

λ̃i ≥ 0︸ ︷︷ ︸
C1

∀λ̃i ∈ Λ̃ and ∑
i
|λ̃i| ≤ δ ·∑

i
|λi|︸ ︷︷ ︸

C2

,

(1)

1As outlined in [4, 12] also most domain specific proximity measures that are employed in real-world
data analysis tasks lead to a non-psd setting.

with class labels Y = diag(y1, . . . ,yN). In contrast to the classical SVM, K is replaced
by a new kernel matrix K̃ = Q̃Λ̃Q̃T . The additional constraints C1 and C2 and the new
regularisation terms R1 and R2 ensure that the new eigenvalues λ̃i are of appropriate
size. After optimization, one obtains the optimized new eigenvalues for Λ̃ to construct
the fused data representation K̃ = Q̃Λ̃Q̃T and additionally an already trained support
vector classifier using optimized α values to classify new unseen data points.

3.2 Vector Output SVM and ASKF

In order to extend the binary ASKF-SVM to an efficient multiclass approach, we make
use of the SVM formulation with vector valued output as described in [16]. The ex-
tension to vector outputs is achieved using a matrix W as the linear operator instead
of the normal w of the separating hyperplane. Transferred to the dual formulation, our
problem takes the form:

min
α

1
2
αT (K⊙ (YT Y))α−1Tα

subject to αi ≥ 0, αi ≤C ∀i ∈ {1, ...,N} Yα= 0
(2)

Where Y = [y1, ...,yn] contains the label vectors of the dataset as columns, ⊙ denotes
element-wise multiplication and K ∈ RN×N is the kernel matrix. The classification
function is now argmaxt∈{0,...,T−1} ∑

N
i=1 αi⟨ŷt ,yi⟩⟨xi,x⟩Φ − ⟨ŷt ,b⟩, where the compo-

nents of the bias vector b are (analogously to the scalar bias offset of the classical
SVM) given by b j = ∑

N
n=1 αn(yn) jKni − (yi) j, for any i with αi > 0 where (yi) j denotes

the jth component of the label vector of instance i with b = [b1, ...,bdim(Y)]
T .

For the choice of label vectors, we follow the scheme introduced in [16]. For a
classification problem with T classes, our label vectors for each class t ∈ {0, ...,T −1}
will be ŷt ∈ RT , with dim(Y) = T . Integrating the voSVM problem from Eq. (2)
into the binary ASKF Eq. (1) yields the formulation of the vectorized ASKF-SVM
(voASKF):

min
α,Λ̃

1
2
αT ((Q̃Λ̃Q̃T)︸ ︷︷ ︸

K̃

⊙(YT Y))α−1Tα−β ·1T Λ̃1︸ ︷︷ ︸
R1

+γ · ||Q̃ΛQ̃T − Q̃Λ̃Q̃T ||∗︸ ︷︷ ︸
R2

subject to αi ≥ 0, αi ≤C ∀i ∈ {1, ...,N} Yα= 0

λ̃i ≥ 0︸ ︷︷ ︸
C1

∀λ̃i ∈ Λ̃ and ∑
i
|λ̃i| ≤ δ ·∑

i
|λi|︸ ︷︷ ︸

C2

,

(3)

4 Experiments and Results

We implemented the optimization problem of Eq. (3) using the GENO solver[17] and
ran experiments using an external GPU2. The initial experiments investigate the scaling
of training time with respect to the dataset size. We compare a One-vs-Rest wrapping

2https://github.com/Pedda1712/ASKFvoSVM contains our implementation of voASKF

around the binary ASKF-SVM with our voASKF. For this purpose, we created blob
datasets of 10 classes with varying number of samples. Five RBF kernels with differing
γ values served as input to the learning models. Table 1 presents the runtimes for each
model training on the synthetic blob datasets, Table 2 the respective accuracies. As
the dataset size increases, the training time for ASKF One-vs-Rest grows significantly,
particularly for the CPU-based implementation, while voASKF (GPU) exhibits a more
moderate increase in training time.

Table 1: Training time in seconds on blob datasets with 2 features and 10 classes.

Dataset Size ASKF OvR (CPU) ASKF OvR (GPU) voASKF (GPU)
100 82.34±11.73 271.70±48.66 49.67±8.34
200 170.66±22.02 356.12±17.93 55.48±16.80
400 659.15±55.86 465.84±29.89 55.94±3.03
600 1,728.71±206.10 610.90±26.55 82.85±14.26
800 3,328.05±120.54 813.28±33.91 105.85±20.45

1000 5,218.64±346.13 1,036.35±15.38 165.68±31.57
1500 13,778.79±631.05 2,641.08±111.34 569.42±161.05
2000 26,355.60±1,134.13 4,784.90±125.53 1,072.41±256.96

Table 2: Test accuracy on blob datasets with 2 features and 10 classes.

Dataset Size ASKF OvR (CPU) ASKF OvR (GPU) voASKF (GPU)
100 0.89±0.03 0.89±0.03 0.86±0.04
200 0.86±0.03 0.86±0.03 0.85±0.03
400 0.91±0.05 0.92±0.03 0.90±0.02
600 0.91±0.01 0.91±0.02 0.93±0.02
800 0.93±0.01 0.93±0.02 0.93±0.01

1000 0.94±0.02 0.92±0.01 0.91±0.01
1500 0.81±0.05 0.80±0.05 0.89±0.01
2000 0.64±0.05 0.64±0.03 0.83±0.01

For smaller dataset sizes, all three methods demonstrate comparable performance. How-
ever, as the dataset size increases, voASKF (GPU) shows superior performance against
ASKF One-vs-Rest implementations, particularly for datasets > 1000 samples. This ef-
fect arises from the cumulative effect of individual binary classifiers, which can lead to
ambiguity where class distributions overlap. The performance discrepancy between the
CPU and GPU OvR implementations arises from known numerical effects associated
with GPU processing 3. Not shown in Table 1 are the training times for the CPU imple-
mentation of voASKF, for which we observed roughly 6 times longer training times in
this experiment, which mirrors the GPU scaling behaviour of the OvR method.

Our second experiments investigate the scaling effect of training time with respect to
the number of classes. Table 3 shows the execution times and prediction accuracies on
the test data. Notably, voASKF scales to a large number of classes without encountering
execution time issues, while maintaining comparable performance.

Finally, to underscore the effectiveness of our method, we evaluated our approach
on diverse datasets from the UCI machine learning repository [18] .We intentionally

3https://pytorch.org/docs/stable/notes/randomness.html

https://pytorch.org/docs/stable/notes/randomness.html

Table 3: Training time and test accuracy on many-class blob data (2d, 750 samples).
Training Time (s) Test Success Rate

Classes ASKF OvR (GPU) voASKF (GPU) ASKF OvR (GPU) voASKF (GPU)
5 181.23±17.79 121.71±14.56 0.94±0.01 0.92±0.02
10 347.85±8.21 118.03±15.64 0.94±0.02 0.92±0.01
15 550.63±22.24 111.07±13.72 0.90±0.02 0.88±0.02
20 768.82±23.38 119.54±13.01 0.83±0.03 0.78±0.04
25 874.51±28.45 113.06±9.88 0.78±0.03 0.74±0.02
30 1,085.27±20.99 115.60±8.90 0.73±0.01 0.70±0.03

generated indefinite tanh-kernels in conjunction with some psd RBF kernels. We score
the dataset’s definiteness by considering the union of the sets of eigenvalues of the M

different kernel matrices S=σ(K1)∪...∪σ(KM). The score is then τ=
∑λneg∈{s|s∈S,s<0} |λneg|

∑λ∈S |λ|
following the experiments from [8].

Our approach was benchmarked against k-Nearest Neighbors (k-NN) with k = 5,
a method inherently capable of handling indefinite kernels. The results of this experi-
ment are given in Table 4. While performing comparably, a notable distinction between

Table 4: Test accuracy on some vectorial datasets with indefinite tanh kernels included.

Dataset #classes τ voASKF ASKF OvR kNN
Image Segmentation 7 0.18 0.86±0.03 0.85±0.03 0.83±0.03
Wholesale customers 3 0.19 0.71±0.01 0.72±0.01 0.62±0.02

Vertebral Column 3 0.15 0.79±0.03 0.82±0.02 0.76±0.03
Glass Identification 6 0.16 0.68±0.04 0.70±0.04 0.64±0.04
Vehicle Silhouettes 4 0.18 0.74±0.02 0.76±0.02 0.69±0.02

User Knowledge Modeling 4 0.04 0.87±0.02 0.86±0.02 0.80±0.02

voASKF and ASKF OvR emerge in their model sparsity, given by the number of sup-
port vectors. In Table 5, we present the number of necessary support vectors which are
an indicator for model complexity and sparsity.

Table 5: Support vector count for the ASKF models of Table 4

Dataset #classes Instances voASKF ASKF OvR
Image Segmentation 7 210 72.80±2.04 100.60±5.16
Wholesale customers 3 440 164.80±6.11 219.20±1.60

Vertebral Column 3 310 123.20±4.17 85.40±7.45
Glass Identification 6 214 83.60±4.13 105.80±0.75
Vehicle Silhouettes 4 845 370.80±3.87 401.00±3.22

User Knowledge Modeling 4 403 178.20±11.51 200.80±0.40

As shown, voASKF generally yields sparser models than ASKF OvR, improving
computational efficiency and potentially enhancing generalization.

5 Conclusion

In this paper, we presented an extension of the Adaptive Subspace Kernel Fusion (ASKF)
method to address the challenges of multi-class classification in multi-view data anal-
ysis. By introducing a vector-labeled multi-class strategy and leveraging GPU-enabled

numerical solvers, our approach significantly enhances the scalability whilst retaining
the performance of ASKF. Our approach not only circumvents the limitations of deep
learning-based embeddings, which often require extensive computational resources and
large datasets, but also provides a robust alternative for integrating non-psd or non-
metric, often domain-specific proximity functions into the learning process. In future
the approach will be evaluated on more real-life scenarios and could be potentially ex-
tended to regression tasks or ordinal classification problems. Due to the computational
cost of ASKF, a rewarding avenue of research may be the use of kernel approximation
schemes [19] to further reduce the cost of the base approach.

Acknowledgments The authors thank the Center for Artificial Intelligence and Robotics,
Würzburg, Germany. Parts of this project where funded in the EU-EFRE project GREEN-
INNO (FKZ:2404-003-1.2).

References
[1] Andreas K Triantafyllidis and Athanasios Tsanas. Applications of machine learning in Real-Life digital

health interventions: Review of the literature. J Med Internet Res, 21(4):e12286, April 2019.
[2] Nikolaos Thomos, Thomas Maugey, and Laura Toni. Machine learning for multimedia communica-

tions. Sensors (Basel), 22(3), January 2022.
[3] William W. Hsieh. Evolution of machine learning in environmental science—a perspective. Environ-

mental Data Science, 1:e3, 2022.
[4] Frank-Michael Schleif and Peter Tiño. Indefinite proximity learning: A review. Neural Computation,

27(10):2039–2096, 2015.
[5] Shiliang Sun, Liang Mao, Ziang Dong, and Lidan Wu. Multiview Machine Learning. Springer, 2019.
[6] Elzbieta Pekalska and Robert P. W. Duin. The Dissimilarity Representation for Pattern Recognition -

Foundations and Applications, volume 64 of Series in Mach. Perc. and AI. WorldScientific, 2005.
[7] Philipp Väth, Maximilian Münch, Christoph Raab, and F.-M. Schleif. Proval: A framework for com-

parison of protein sequence embeddings. Journal of Comp. Math. and Data Science, 3:100044, 2022.
[8] Maximilian Münch, Manuel Röder, Simon Heilig, Christoph Raab, and Frank-Michael Schleif. Static

and adaptive subspace information fusion for indefinite heterogeneous proximity data. NC, 555:126635,
2023.

[9] Bernhard Schölkopf and Alexander Johannes Smola. Learning with Kernels: support vector machines,
regularization, optimization, and beyond. Adaptive Computation and ML Series. MIT Press, 2002.

[10] Jeffrey Pennington, Felix X Yu, and Sanjiv Kumar. Spherical random features for polynomial kernels.
In Adv. in NIPS, pages 1837–1845. MIT Press, 2015.

[11] Fanghui Liu, Xiaolin Huang, Yingyi Chen, and Johan Suykens. Fast Learning in Reproducing Kernel
Krein Spaces via Signed Measures. In AISTATS’2021, pages 388–396. PMLR, 2021.

[12] Maximilian Münch, Christoph Raab, Michael Biehl, and Frank-Michael Schleif. Data-driven super-
vised learning for life science data. Frontiers Appl. Math. Stat., 6, 2020.

[13] Mehmet Gönen and Ethem Alpaydin. Multiple kernel learning algorithms. JMLR, 12:2211–2268, 2011.
[14] Fabio Aiolli and Michele Donini. EasyMKL: A scalable multiple kernel learning algorithm. Neuro-

computing, 169:215–224, 2015.
[15] Alain Rakotomamonjy, Francis R. Bach, Stéphane Canu, and Yves Grandvalet. SimpleMKL. Journal

of Machine Learning Research, 9(83):2491–2521, 2008.
[16] Sandor Szedmak and John Shawe-Taylor. Multiclass learning at one-class complexity. 01 2005.
[17] Sören Laue, Matthias Mitterreiter, and Joachim Giesen. GENO – GENeric Optimization for classical

machine learning. In Advances in Neural Information Processing Systems (NeurIPS). 2019.
[18] Dheeru Dua and Casey Graff. Uci machine learning repository, 2017.
[19] Maximilian Münch, Katrin Sophie Bohnsack, Frank-Michael Schleif, and Thomas Villmann. Data-

distribution-informed nyström approximation for structured data using vector quantization-based land-
mark determination. Neurocomputing, 596:128100, 2024.

	Introduction
	Background
	Learning with Multiple Kernel Functions

	Methodology
	Adaptive Subspace Kernel Fusion
	Vector Output SVM and ASKF

	Experiments and Results
	Conclusion

