
Towards Learning Vector Quantization in the
Setting of Homomorphic Encryption

Ronny Schubert1,3, Thomas Davies1∗, Mandy Lange-Geisler1,

Klaus Dohmen1, Thomas Villmann1,2

1- Mittweida University of Applied Sciences
Saxon Institute for Computational Intelligence and Machine Learning

Technikumplatz 17, 09648 Mittweida

2- Technische Universität Freiberg

3- NEC Laboratories Europe GmbH, Heidelberg, Germany

Abstract. With federated learning scenarios gaining popularity to out-
source computational heavy tasks or to increase generalizability of machine
learning models, there is also a rise of research in terms of the security and
privacy of the respective data used for these tasks. While differential pri-
vacy is studied well for Learning Vector Quantization, we want to present
steps towards Homomorphic Encryption. In this regard, we will show the-
oretically how LVQ-1 can be adapted to be compatible with the TFHE
encryption scheme and present experimental results.

1 Introduction
In scenarios of scarce data decentralized tasks such as federated learning or cloud
computing for machine learning are gaining popularity to improve generalizabil-
ity or to outsource expensive computations [1, 2]. As a result, these methods are
interesting for medical or biological data and applications. In the same breath,
concerns of trust with respect to the cloud are apparent, which, in turn, becomes
a subject of data privacy. As [3, 4, 5] showed, this privacy could rather easily
be broken for neural networks and Learning Vector Quantization (LVQ). In this
regard, various countermeasures have been studied with two standing out - dif-
ferential privacy (DP) and homomorphic encryption (HE). Whereas DP has
been extensively investigated for machine learning [2] and also LVQ [4], HE ap-
plications are still on the rise. While the main advantage of HE is, that it allows
calculations on the encrypted messages, thus making it attractive for privacy-
preserving machine learning, it is also what troubles bigger networks or circuits.
The underlying security of HE schemes is based on variants of the learning with
errors (LWE) problem, where the output of a function is the same for an input
and its noisy variants [6]. During the evaluation of a circuit noise increases over
the number and types of operations, which limits the possible circuit length to
output the correct result. Although [7] introduced bootstrapping to obtain un-
limited circuit lengths the resulting strategy slows down computations, making
such schemes predominantly interesting for the inference of machine learning
models [2]. However, sparse or shallow models may avoid these pitfalls by al-
lowing also training in a feasible time. In this regard, k-Means has been studied
in HE settings [8, 9] which will serve as a basis for our work.

∗T.D. is supported by an ESF PhD-grant.
Underlined authors contributed equally.



2 Learning Vector Quantization and TFHE
In this work we opted for LVQ-1 being the respective machine learning model
and Fast Fully Homomorphic Encryption over the Torus (TFHE) [10] as the
HE scheme. We will briefly describe LVQ-1 and highlight the respective modules
which need to be adapted to suit the TFHE scheme. Due to space constraints, we
will highlight only certain aspects of TFHE and refer the reader to [1, 10, 11, 12]
for an overview and in-depth literature.

2.1 LVQ-1
Considering x ∈ X ⊆ Rn as a data sample and pj ∈ P ⊂ Rn to be a prototype
and yx, ypj

∈ Y to be their respective classes, then the update for pj in LVQ-1

[13] can be formulated as

∆pj = ϵ · ψ
(
yx, ypj

)
·
(
x− pj

)
(1)

where ϵ > 0 is the learning rate, the decision function

ψ
(
yx, ypj

)
=


1 if yx = ypj

and j = argmin
i

d
(
x,pi

)
−1 if yx ̸= ypj

and j = argmin
i

d
(
x,pi

)
0 else

determines the direction of the vector shift in (1), and d
(
x,pj

)
is the squared

Euclidean distance. As shown in [14], we are able to decompose (1) into map-
pings which give rise to respective functions in TFHE. Moreover, we note, that
d
(
x,pj

)
can be considered as an inner product, helping us to define the appro-

priate distance function in (2).

2.2 TFHE
TFHE uses multiple ciphertext variants to provide a rich set of homomorphic
operations [10, 11]. In this regard, a message m is considered to be m ∈ Rp =
Zp[Z]/ (ϕa(Z)) with p the modulo usually chosen as a power of 2 and ϕa(Z)
the a-th cyclotomic polynomial of Zp, where a is commonly chosen to be a
power of 2, reducing ϕa(Z) to a polynomial of the form (ZN + 1). Moreover,
TFHE operates over the set {0, 1}, i.e., considers the binary representation of
messages and ciphertexts and circuits operating on these objects to be boolean
circuits. At this point we want to emphasize, that a respective integer encoding
of the usual floating-point data X ⊆ Rn is needed. Furthermore, the samples
x ∈ X are often in vectorial representation while the above representation of m

is the representation of a single integer. Thus, x̂ ∈ Rn
p = Zn

p [Z]/
(
ZN + 1

)
to

consider x ∈ Rn encoded as a n-dimensional vector of plaintext messages. To
finally represent our circuit, i.e., a full training step, we will use generalized -LWE
(GLWE) ciphertexts. Nevertheless, we emphasize, that certain operations like
homomorphic multiplication are not natively supported by GLWE ciphertexts,
which is circumvented by the conversion to a supporting ciphertext variant (in
this case GSW) for which key-switching is used [10, 11]. However, using GLWE
to illustrate our circuit, ciphertexts are represented cm ∈ Rk

q = Zk
q [Z]/

(
ZN + 1

)
with 0 ≤ p ≤ q as the k-dimensional encryption of m - a single integer and
cx ∈ Rn×k

q = Zn×k
q [Z]/

(
ZN + 1

)
of the n-dimensional x̂ vector.



3 Training of LVQ-1 as TFHE Circuit
Based on [8, 9] we will adapt the training step of LVQ-1 to a TFHE circuit.
Let cx, cpj

∈ Rn×k
q = Zn×k

q [Z]/
(
ZN + 1

)
be GLWE ciphertexts of data sample

x and prototype pj as defined above and ⊕,⊖,⊙ operations in the encryption
scheme realizing the analoga of +,−, · in the plaintext space, we define

δ
(
cx, cpj

)
=

n⊕
i=1

([
cx

]
i
⊙
[
cx

]
i

)
⊖

(
2̂⊙

[
cx

]
i
⊙

[
cpj

]
i

)
⊕

([
cpj

]
i
⊙

[
cpj

]
i

)
(2)

for the translation of the squared euclidean distance into a TFHE compatible
function δ ∈ Rk

q with [·]i selecting the i-th component of a ciphertext and 2̂ being

the representation of the constant 2 in Rk
q . Moreover, (2) can be considered as

an analogon to the euclidean inner product but on the ciphertexts and, further,
can be used to also translate ψ(·) into a suitable TFHE function. Moreover, as
[8] pointed out, it is possible to replace the euclidean distance by the manhattan
distance to speed-up operations.

3.1 Decision Function in TFHE
To translate ψ(·) into a compatible circuit function we need to consider its
structure in a 2-fold way, i.e., we are splitting the winner determination and
the verification of the classes. For the winner determination we can use an
approach similar to the FindMin function of [8] in which the minimum distance
is determined and finally yields 1 for the respective index and 0 else, but for our
purpose amended for only one sample with respect to all prototypes. The class
of the winner is then determined via look-up tables in TFHE with respect to
the given index. Moreover, [10] showed, that comparisons between ciphertexts
in TFHE can be realized through deterministic weighted finite automata which
is converted to a circuit of controlled - MUX (CMux) gates. We denote as
fm(·) the amended FindMin function yielding the winner index, P the number

of prototypes and the equality function Bi

(
ŷx

)
as a circuit of CMux gates to

verify a class (mis-) matching

Bi

(
ŷx

)
=

{
1 if ŷx = ŷpi

0 else
(3)

such that we define for the encrypted ψ̂(·) on the encrypted classes ŷx, ŷpj
with

δi the ciphertext distance between cx and cpi

j = fm (δ1, . . . , δP )

ψ̂
(
ŷx, ŷpj

)
= Bj

(
ŷx

)
⊖Bj

(
ŷx

)
(4)

with Bi

(
ŷx

)
being the negation of Bj

(
ŷx

)
, such that (4) yields 1̂ ∈ Rk

q or

−1̂ ∈ Rk
q to resemble the attraction-repelling for the winner index j. Ultimately,

this allows us to define the prototype update.



3.2 Prototype Update in TFHE
With the above adaptations (2) - (4) we are able to define the update for an
encrypted prototype in TFHE. Hence, let ϵ̂ ∈ Rk

q be an encrypted learning rate
and cpj

the encrypted winner prototype

cpj
(t+ 1) = cpj

(t)⊕ ϵ̂−1 ⊙ ψ̂
(
ŷx, ŷpj

)
⊙
(
cx ⊖ cpj

(t)
)

(5)

As a remark, the learning rate ϵ̂ cannot be considered like the common learning
rate which would be in [0, 1] but instead ϵ̂ constitutes an integer in Rk

q and to
emulate the scheduling of conventional learning, i.e., to regularize learning by
decreasing the learning rate to 0, we instead consider the multiplication with
ϵ̂−1 to be the integer division by ϵ̂ and increase it over the training time t.

4 Experiments
In our experiments1, we used the concrete library from Zama [12] along with
the Iris and Wine datasets provided by scikit-learn2. Our circuit constitutes a
training step of LVQ with the above realizations of the respective functions that
updates the set of prototypes as in (5) by using a single, randomly chosen en-
crypted data sample cx to emulate the stochastic approximation of LVQ. These
prototypes can then be reinserted into the circuit to obtain the training routine.
Moreover, the circuit can be executed for encrypted data, but also for integer
data. As previously discussed, operations on ciphertexts increase noise which
limit stable numerical values with respect to the circuit’s computational depth.
To manage this, we experimentally determined the maximum threshold values
achievable with our chosen distance measure and dataset. We precomputed
the learning rates to reduce the need for computation within the ciphertext
space. Finally, because the Euclidean squared distance can yield large values
and is expected to generate a lot of noise due to squaring polynomials [10], we
also conducted experiments using the Manhattan distance, which has previously
been applied in k-Means training [8]. The resulting experiment configuration is
provided in Table 1.

Configuration Bounds Epochs Learning Rates
Iris + Manhattan [−39, 39] ⊂ Z 5 (5, 11, 17, 23, 29)
Iris + Euclidean [−11, 11] ⊂ Z 5 (5, 6, 7, 8, 9)

Wine + Manhattan [−19, 19] ⊂ Z 5 (5, 7, 9, 11, 13)
Wine + Euclidean [−8, 8] ⊂ Z 5 (4, 5, 6, 7, 8)

Table 1: Experimental Settings containing the configuration, estimated bounds, the number of
epochs and the pre-computed learning rates.

To transform the dataset to the specified bounds, we first normalized the
data across the dataset, applied feature scaling into the range of the determined
bounds and then rounding, adjusting them to the maximum bound to preserve
as much information as possible during learning. We conducted the experiments
for the circuit with encrypted data and plaintext integer data with the respective
feature scaling (see 1). The results for seven different random seeds can be found

1Source code to experiments can be found at https://github.com/lvlanson/LVQ_TFHE
2These datasets can be found in the Python package scikit-learn.



in table 2. Presented are the mean test accuracies (µ) with a test data ratio of 0.2
and the respective standard deviations (σ) for each variant to be evaluated for
FHE numerical stability and vanilla LVQ-1 serving as our baseline. Additionally,
memory consumption and training time for the encrypted version are presented.

Configuration
Accuracy (µ, σ)
Encrypted

Accuracy (µ, σ)
Integer

Accuracy (µ, σ)
Vanilla LVQ-1

Memory Demand
(in GByte)

Training Time
(in hours)

Iris + Manhattan 0.900, 0.06 0.914, 0.05 0.910, 0.04 45.01 42.2
Iris + Euclidean 0.910, 0.05 0.905, 0.05 0.914, 0.05 39.30 65.7

Wine + Manhattan 0.813, 0.08 0.821, 0.09 20.488, 0.09 31.30 73.5
Wine + Euclidean 0.397, 0.06 0.877, 0.06 20.480, 0.08 39.35 76.6

Table 2: Recorded mean test accuracies and deviations and additionally the memory demand in
GByte and training time of the encrypted version.3

First, we observe that both the encrypted and integer representations gen-
erally perform well, except when using the Euclidean distance with the Wine
dataset. We suspect that the combination of low numerical bounds and the
squaring operation in the Euclidean distance leads to significant noise overflow,
making computations unreliable, with accuracies ranging from 0.30 to 0.52. The
time measurements included the circuit compilation, key generation, encryp-
tion/decryption, and evaluation during training, highlighting the current com-
putational complexity impact of FHE on these tasks4. Another observation is
the accuracy deviation between the encrypted and plaintext (Integer) versions
when evaluating the same circuit. To investigate this, we analyzed the proto-
types computed by both methods. Table 3 shows the deviation of prototypes
from encrypted training compared to plaintext integer training across all ex-
periments. The deviation is represented by the absolute difference of prototype
components, with the maximum deviation indicating the largest observed differ-
ence and the average deviation showing the mean. The relative average accounts
for the bound, calculated as average/bound. We observe that the Manhattan
distance provides greater numerical stability compared to the squared Euclidean
distance.

Configuration
Maximum
Deviation

Average
Deviation

Relative Average
Deviation in %

Iris + Manhattan 5 0.59 1.52
Iris + Euclidean 2 0.26 2.38

Wine + Manhattan 3 0.17 0.93
Wine + Euclidean 25 8.62 107.83

Table 3: Prototype deviations between the decrypted protototypes and the integer prototypes in
terms of the maximum, average and relative (with respect ot the bound) deviation.

5 Conclusion
The relatively lightweight nature of LVQ algorithms enabled a successful im-
plementation within an FHE scheme and our considerations may stimulate new
directions in privacy preserving prototype-based machine learning. Future inves-
tigations could focus on the numerical stability of a TFHE implementation over
the parameter space outlined in the experiment section. During our experiments,
we observed an optimum in the choice of bounds: beyond a certain threshold,

3The rather poor results for Vanilla LVQ-1 on the Wine dataset are likely due to a un-
favorable prototype initialization. However, provably, neither the discrete nor the encrypted
versions did suffer as dramatic under the used initialization.

4The experiments were executed on an AMD Epyc 7713 clocking at 2.1GHz.



increases in bound size led to diminishing returns in accuracy. With further
implementation improvements, it may be possible both to reduce the compu-
tational time needed to determine optimal bounds for the learning task and to
expand the range of feasible bounds for the data space. More complex LVQ al-
gorithms are challenging to implement with current TFHE implementations due
to limitations in numerical stability and computational complexity. Therefore,
alternative FHE schemes could be considered to apply more sophisticated LVQ
algorithms on encrypted data.

Acknowledgement
We want to thank the developers and maintainers of the library concrete [12]
(https://github.com/zama-ai/concrete) for the helpful advices on the im-
plementation.

References

[1] Alexander Wood, Kayvan Najarian, and Delaram Kahrobaei. Homomorphic encryption
for machine learning in medicine and bioinformatics. ACM Comput. Surv., 53(4), August
2020.

[2] Ran Gilad-Bachrach, Nathan Dowlin, Kim Laine, Kristin Lauter, Michael Naehrig, and
John Wernsing. Cryptonets: Applying neural networks to encrypted data with high
throughput and accuracy. In Proceedings of The 33rd International Conference on Ma-
chine Learning, volume 48 of Proceedings of Machine Learning Research, pages 201–210,
New York, New York, USA, 20–22 Jun 2016. PMLR.

[3] Jonas Geiping, Hartmut Bauermeister, Hannah Dröge, and Michael Moeller. Inverting
gradients - how easy is it to break privacy in federated learning? In H. Larochelle,
M. Ranzato, R. Hadsell, M.F. Balcan, and H. Lin, editors, Advances in Neural Informa-
tion Processing Systems, volume 33. Curran Associates, Inc., 2020.

[4] Johannes Brinkrolf, Christina Göpfert, and Barbara Hammer. Differential privacy for
learning vector quantization. Neurocomputing, 342:125–136, 2019.

[5] Ronny Schubert and Thomas Villmann. About vector quantization and its privacy in fed-
erated learning. In European Symposium on Artificial Neural Networks, Computational
Intelligence and Machine Learning - ESANN, pages 81–86, 01 2024.

[6] Oded Regev. On lattices, learning with errors, random linear codes, and cryptography.
J. ACM, 56(6), September 2009.

[7] Craig Gentry, Shai Halevi, and Nigel P. Smart. Fully homomorphic encryption with
polylog overhead. Cryptology ePrint Archive, Paper 2011/566, 2011.

[8] Angela Jäschke and Frederik Armknecht. Unsupervised machine learning on encrypted
data. Cryptology ePrint Archive, Paper 2018/411, 2018.

[9] Georgios Sakellariou and Anastasios Gounaris. Homomorphically encrypted k-means on
cloud-hosted servers with low client-side load. Computing, 101, 2019.

[10] Ilaria Chillotti, Nicolas Gama, Mariya Georgieva, and Malika Izabachène. TFHE: Fast
fully homomorphic encryption over the torus. Cryptology ePrint Archive, Paper 2018/421,
2018.

[11] Sara Logsdon. Fully homomorphic encryption: A mathematical introduction. Cryptology
ePrint Archive, Paper 2023/1402, 2023.

[12] Ilaria Chillotti, Marc Joye, Damien Ligier, and Jean-Baptiste Orfila. Concrete: Concrete
operates on ciphertexts rapidly by extending tfhe. 2020.

[13] Teuvo Kohonen. Self-Organizing Maps. Springer Berlin Heidelberg, 1995.
[14] Ronny Schubert and Thomas Villmann. About interpretable learning rules for vector

quantizers - a methodological approach. In Advances in Self-Organizing Maps, Learn-
ing Vector Quantization, Interpretable Machine Learning, and Beyond - WSOM+ 2024,
pages 152–162, 2024.


