
Towards Adaptive and Stable Compositional
Assemblies of Recurrent Neural Network Modules

Valerio De Caro, Andrea Ceni, Davide Bacciu, Claudio Gallicchio ∗

Department of Computer Science, University of Pisa
Largo Bruno Pontecorvo 3, Pisa, Italy school

Abstract. Recurrent neural networks (RNNs) are computational models
regarded as dynamical systems. Modularity is a key ingredient of com-
plex systems. Thus, the composition of RNN modules provides a simple
paradigm for building complex computational models, with the potential
to approach the human brain capability. We devise strategies for training
RNNs assembled into a larger RNN of RNNs, provided with theoretical
guarantees of stability that hold during training for the composed global
network. Experiments on pixel-by-pixel image classification benchmarks
prove the effectiveness of this approach.

1 Introduction

In the modern landscape of AI, compositional learning stands out as a funda-
mental feature for combining “primitive” learning modules within integrated
systems leveraging the representation capabilities of its subparts. This concept
mirrors the current understanding of the human brain where, while sub-areas are
delegated to specific tasks, the interactions among the areas provide enhanced
and more complex representations [1]. Changing the perspective to one of seman-
tic representations of concepts, combining simple concepts into more complex
ones is a cornerstone of the human ability to understand, reason, and learn [2].
Equipping learning modules with compositional abilities allows to benefit from
the reuse of specialized knowledge, as well as from richer representations to solve
intricate problems more accurately [3]. Joining the notion of compositionality
to the landscape of dynamical systems leads to the desiderata of achieving the
ability to compose multiple dynamical systems into an assembly of dynamical
systems, whose dynamics emerging from appropriate modelling of their mutual
interaction enrich the information of the singles. This property is particularly
beneficial in the context of sequential data processing tasks, where Recurrent
Neural Networks (RNNs) represent a model of choice. Interpreting these models
as an input-driven dynamical system is a widely adopted practice in literature
[4] and, as such, ensuring their stability is a crucial aspect to address. In this
regard, the seminal work in [5] first investigated stable assemblies of RNNs
and provided solution for coupling different stable RNN modules to preserve
overall stability. The main idea is to define RNNs that correspond to contractive
dynamical systems and exploit contract theory results in the literature [6] to

∗This work has been supported by NEURONE, a project funded by the European Union
- Next Generation EU, M4C1 CUP I53D23003600006, under program PRIN 2022 (prj code
20229JRTZA), and EU-EIC EMERGE (Grant No. 101070918).



build up larger RNNs of RNNs with stability guarantees. Their theoretical
investigation is accompanied by the proposal of approaches to guarantee the
contractive dynamics of the single RNN modules accordingly. A first strategy
relies on complex optimization schemes to allow the adaptation of the RNN
modules and the connections between them with stability guarantees. However, a
second, more straightforward and better-performing strategy, denoted as Sparse
Combo Net, consists of simply fixing the RNN modules’ recurrent weights in a
contractive configuration and only learning the connections between RNN mod-
ules. These results highlight how it remains an open and pressing problem to find
strategies for adapting the internal weights of the RNN modules to outperform
the simple strategy of keeping them fixed. In this paper, we take a step further
and focus on constructing stable and fully adaptive assemblies of RNNs, while
relaxing from the complexity arising from the optimization of the RNN modules.
A necessary step toward the ambitious goal to unlock the expressive power of
an RNN composed of smaller specialized and adaptive RNNs is to ensure the
stability of the whole network as a dynamical system, without the burden of
dealing with complex optimization schemes to foster stability in the training
phase. To achieve this objective, we propose two strategies to allow adaptivity of
the internal weights of RNN modules while ensuring contractive dynamics from
each. We test these new strategies on the popular permuted sequential MNIST
(psMNIST) and sequential MNIST (sMNIST) tasks and compare them to Sparse
Combo Net. Experiments demonstrate the effectiveness of our proposal, with the
new strategies outperforming the original Sparse Combo Net (SCN) in all cases.

2 Skew-symmetric coupling of RNN modules

We consider a number p of RNN subnetworks of the following type [5]:

τ ẋi = −xi +Wiϕ(xi) + ui(t), i = 1, . . . , p, (1)

where xi is the hidden state of the i-th RNN, Wi ∈ RN×N are the recurrent
connections, ui(t) the input driving the i-th subnetwork, and ϕ is the nonlinear
activation function, tanh in our experiments. We couple the i-th RNN module
with the j-th RNN module them via matrices Lij ∈ RN×N with the skew-
symmetric constraint as follows:

Lij = −LT
ji, (2)

so that the overall RNN of RNNs defined by:

τ ẋi = −xi +Wiϕ(xi) +

p∑
j=1

Lijxj + ui(t), i = 1, . . . , p, (3)

is guaranteed to be a stable system whenever the single RNN modules in (1) are
themselves stable [5].



Sparse Combo Net AdaDiag Sparse Net

Fig. 1: Depiction of an assembly of RNNs. Straight arrows denote untrained
connections, while wavy arrows denote trained connections. Left: Sparse Combo
Net trains only the connections between RNN modules leaving the internal
connections of the single RNN modules untrained. Right: AdaDiag Sparse
Net (our) trains the connections between RNN modules and also the internal
connections of the single RNN modules, which result in adaptive self-loops.

Sparse Combo Net SCN initializes the weights Wi in eq. (1) according to the
criterion in [5, Theorem 1] to achieve a contractive parameterization. Now, such
a criterion is too computationally intensive to be checked at each weights-update
iteration, they are left untrained throughout the learning process, while the
coupling matrices Lij are trained under the constraint of eq. (2).

Contrariwise, we propose a couple of strategies for adapting the internal
weights of RNN modules while ensuring contraction dynamics during training.
We use the same methodology as SCN for training the coupling matrices Lij , but
we allow the internal connections of the RNN modules to be trained. Both these
strategies ensure that the spectral norm of the matrix Wi is less or equal than
1 during training. This guarantees that each single RNN module, if decoupled
from all the others, is contracting [7]. Both our proposals involve the use of
single RNN modules whose internal units do not communicate with each other,
i.e. the matrices Wi are structured to be diagonal. We call this model AdaDiag
Sparse Net. Restricting individual RNN modules to a diagonal form limits
their expressiveness, as their neurons remain independent. However, the overall
network preserves its representational ability since the coupling matrices Lij

enable communication between neurons across different modules.

AdaDiag Sparse Net with tanh. We consider diagonal matrices Wi with entries
constrained via the component-wise application of the hyperbolic tangent on the
entries of Wi. This strategy ensures that the diagonal elements of Wi assume
values in (−1, 1). Therefore, the spectral norm of Wi is necessarily less than 1.



AdaDiag Sparse Net with clip. We consider diagonal matrices Wi with entries
clipped to 0.99 whenever they exceed the value 1, or clipped to −0.99 whenever
they assume a value less than −1. This strategy ensures that the diagonal
elements of Wi assume values in (−1, 1). Therefore, the spectral norm of Wi is
necessarily less than 1.

3 Experimental Assessment

The purpose of our experiments is to provide an analysis of the proposed strategies
in comparison with the best model from [5] as baseline. We implemented our
version of the models based on the available code at https://github.com/

kozleo/rnns-of-rnns. In our setup, the assembly size is fixed to 16 recurrent
modules, each consisting of 32 units. For an assembly of 16 modules, the total
amount of possible coupling blocks is 240, but under the constraint of eq. (2), the
total trainable coupling blocks is 120 (i.e., 16×15

2 ). We analyzed the behaviour
under different levels of sparsity in the modules’ coupling by setting the number
of coupling blocks C to 5 and 20. To pursue the aforementioned objective, we
configured the initialization and the adaptivity of diagonal blocks in the following
four ways: (1) fixed, sparse matrix with 3% of nonzero entries (as in [5]); (2)
fixed, sparse matrix with 30% of nonzero entries; (3) diagonal matrix adapted
with strategy 1; (4) diagonal matrix adapted with strategy 2. The nonlinearity in
eq. (3) is tanh, and the discretization step is 0.03 (using forward Euler method).

We assessed all the configurations on the regular and the permuted version of
Sequential MNIST. We trained and validated each configuration on the given
train/test split three times. Each run was limited to a maximum of 200 training
epochs, and we applied early stopping when reaching a plateau in the validation
accuracy.

3.1 Results

In Table 1, we report the performance of all the assessed configurations, plus
the performance of a Vanilla RNN as reference. Starting from the configurations
with lower coupling among the RNN modules, i.e., with C = 5, we can observe
that our model outperforms the baseline by ∼ 2% with the clipping method on
sMNIST and by ∼ 5% with the tanh method on psMNIST. From these results, we
deduce that the accuracy benefits from the adaptivity arising from the interaction
between the models when the coupling is low. Even more relevant, when the
coupling is higher, i.e., with C = 20, we experience a significant improvement in
the performance on psMNIST, as the adaptivity of the RNN modules tackles the
higher complexity of the task. From a general perspective, we can observe that
our strategies are more consistent in terms of performance across the runs, as
the standard deviation is significantly lower than the one of Sparse Combo Net
in most of the cases as adaptivity of the RNN modules allows to cope with bad
parameterization in the initialization phase. This is further supported by the
representation of the weights in Figure 2, where we can observe that the entries of
the coupling blocks tend to saturate more on the Sparse Combo Net. Hence, we

https://github.com/kozleo/rnns-of-rnns
https://github.com/kozleo/rnns-of-rnns


Block Method
sMNIST psMNIST

C = 5 C = 20 C = 5 C = 20

SCN [5] Sparse (3%) 77.99±1.58 90.04±0.72 74.32±2.51 82.08±0.98

SCN [5] Sparse (30%) 85.44±1.67 90.04±0.92 80.18±0.51 85.91±1.36

AdaDiag (our) tanh 86.60±0.68 88.71±0.07 85.11±0.25 88.53±1.23

AdaDiag (our) clip 87.74±0.11 88.89±0.06 84.27±1.10 89.63±0.25

Vanilla RNN [8] dense 49.10 – – 71.60

Table 1: Performance of different configurations of assemblies (including number
of coupling blocks C) on sMNIST and psMNIST. The first two rows correspond
to two sparsity settings of the SCN model found in [5]. The third and fourth
rows correspond to our methods, as described in Section 2. In the last row, the
performance of a fully-connected RNN trained as a monolithic block, with a
comparable number of trainable parameters. We report the mean and standard
deviation of the test set accuracy averaged over three runs, apart from Vanilla
RNN which is taken from [8]. The best result for each dataset and coupling block
configuration is highlighted in bold.

conjecture that adapting the inner dynamics of each RNN modules by accounting
also for the interactions with other networks allows to better accomodate the
knowledge across the assembly, ultimately leading to a performance improvement.
We remark that adapting the RNN modules in the training phase does not
produce a significant overhead from a computational perspective, as the Sparse
Combo Nets required an average time per epoch of ∼ 185s, against the ∼ 206s of
our strategies. Finally, we conclude noticing that, training as a monolithic block
a Vanilla RNN results in poorer performance in the considered classification
benchmarks, despite its theoretically greater expressive power due to lack of
architectural constraints.

4 Conclusions

In this paper, we addressed the problem of constructing a stable and adaptive
assembly of Recurrent Neural Networks (RNNs). We laid the foundations of our
work on the theoretical results from [5], where the best-performing approach pro-
posed requires all the RNNs of the assembly to stay fixed throughout the training
process. Motivated by the potential benefit in the representation capabilities of
the assembly by allowing the adaptivity of the modules, we proposed two strate-
gies where the RNNs’ weight matrices are diagonal (thus encompassing the exact
eigenspectrum of the recurrent transformation), and their values are bounded in
the (−1, 1) interval. In our experiments, compared the proposed methodologies
with the fixed baseline in [5] on sMNIST and psMNIST, with different levels
of coupling among the RNNs. The results showed that the adaptivity of the
RNNs leads to outperform the baseline in most of the cases, while maintaining
better consistency across the runs. This highlighted that the inner dynamics



Fig. 2: Representation of the weights of the RNN of RNNs for each strategy on
psMNIST with C = 20.

of each RNN module benefit from adapting according to the dynamics of the
others. In the future, we aim to generalize our approach to different architectures
while investigating further the theoretical foundation of stable RNNs composed
of smaller adaptive RNNs.

References

[1] B. M. Lake, T. D. Ullman, J. B. Tenenbaum, and S. J. Gershman, “Building machines that
learn and think like people,” Behavioral and brain sciences, vol. 40, p. e253, 2017.

[2] E. R. Kandel, J. H. Schwartz, T. M. Jessell, S. Siegelbaum, A. J. Hudspeth, S. Mack, et al.,
Principles of neural science, vol. 4. McGraw-hill New York, 2000.

[3] S. Sinha, T. Premsri, and P. Kordjamshidi, “A survey on compositional learning of ai
models: Theoretical and experimetnal practices,” arXiv preprint arXiv:2406.08787, 2024.

[4] B. Chang, M. Chen, E. Haber, and E. H. Chi, “Antisymmetricrnn: A dynamical system
view on recurrent neural networks,” arXiv preprint arXiv:1902.09689, 2019.

[5] L. Kozachkov, M. Ennis, and J.-J. Slotine, “Rnns of rnns: Recursive construction of
stable assemblies of recurrent neural networks,” Advances in neural information processing
systems, vol. 35, pp. 30512–30527, 2022.

[6] W. Lohmiller and J.-J. E. Slotine, “On contraction analysis for non-linear systems,” Auto-
matica, vol. 34, no. 6, pp. 683–696, 1998.

[7] I. B. Yildiz, H. Jaeger, and S. J. Kiebel, “Re-visiting the echo state property,” Neural
networks, vol. 35, pp. 1–9, 2012.

[8] S. Chang, Y. Zhang, W. Han, M. Yu, X. Guo, W. Tan, X. Cui, M. Witbrock, M. A.
Hasegawa-Johnson, and T. S. Huang, “Dilated recurrent neural networks,” Advances in
neural information processing systems, vol. 30, 2017.


	Introduction
	Skew-symmetric coupling of RNN modules
	Experimental Assessment
	Results

	Conclusions

