
3-WL GNNs for Metric Learning on Graphs

Aldo Moscatelli, Maxime Bérar,
Pierre Héroux, Florian Yger and Sébastien Adam.

Univ Rouen Normandie, INSA Rouen Normandie, Normandie Univ
LITIS UR4108, F-76000 Rouen, France

Abstract. Since the advent of Graph Neural Networks (GNNs), many
works have computed distances between graphs by embedding them in
vector spaces using Message Passing GNNs (MPNNs). However, MPNNs
are known for their lack of expressiveness as they are bounded by the first-
order Weisfeiler-Lehman test. In this paper, we use higher-order GNNs
to tackle the metric learning problem and show on benchmark datasets
how they can improve performance by using a node-level strategy and the
Wasserstein distance.

1 Introduction

A key challenge in modeling structured information with graphs lies in comput-
ing the distances between them. The Graph Edit Distance(GED)[4] is a state-of-
the-art method for this purpose; however, it suffers from NP-hard complexity.
Recently, several architectures have been proposed to address this limitation
[9, 7, 8, 11, 12] in a learning framework. These architectures generally consist of
two main components. The first is an embedding block that uses siamese Graph
Neural Networks(GNNs) to embed graphs either at the graph level or at the
node level. The second component is a metric block that takes the embeddings
generated by the first block as input and computes the distance between graphs,
taking into account the embedding level. The rationale behind these architec-
tures is that the embedding block learns an optimal representation to facilitate
the computations in the metric block.

To the best of our knowledge, existing embedding blocks in the literature
rely on simple yet effective Message Passing Neural Networks(MPNNs), such as
GCN [3] or GIN [2]. Consequently, they suffer from the well-known limitations
of MPNNs, including over-smoothing, over-squashing, and limited expressive
power. This last limitation is particularly significant for metric learning, as it
affects the ability to generate distinct embeddings for different graphs. Yet,
GCN and GIN models have been shown to be at most equivalent to the first-
order Weisfeiler-Lehman(WL) test in the WL hierarchy [1].

Recently, more expressive GNNs such as PPGN [5] and G2N2 [6] have been
introduced in the literature, achieving a 3-WL expressivity level. To attain this
level of expressivity, these architectures naturally incorporate edge embeddings,
adding valuable information to the traditional node- and graph-level represen-
tations. These recent developments raise two research questions: how can 3-WL
GNNs be integrated into a metric learning framework, and do they enable im-
proved performance?

Embedding block
n
o
d

e
fe

a
tu

re
s

a
d

ja
ce

n
cy

m
a
tr

ic
e
s

Metric block

3-WL siamese
 GNN

C
o
n
ca

t
C

o
n
ca

t

Node/edge-Level
Embeddings

Graph/Node-Level
Readouts

M
LP

Node-Level distance

Graph-Level distance

Nodewise
cost matrix

Wasserstein
Distance

Graph space Euclidean Distance

Backpropagation

ground truth

M
LP

M
LP

M
LP S

h
a
re

d
 w

e
ig

h
ts

S
h
a
re

d
 w

e
ig

h
ts

...

...

G
ra

p
h
-L

e
v
e
l

R
e
a
d

o
u
t

N
o
d
e
-L

e
v
e
l

R
e
a
d
o
u
t

Shared weights
Loss

Fig. 1: Overview of the 3-WL graph metric learning framework. The solid
blue arrow corresponds to the graph-level distance and the red dotted arrow
corresponds to the node-level distance.

In this paper, we address these questions by investigating the impact of
incorporating more expressive GNNs into Siamese-based metric learning archi-
tectures. Given that these GNNs produce richer outputs, specifically through
edge-level embeddings for each graph, we propose two main strategies for com-
puting the distance between graph pairs: a graph-level distance and a node-level
matching approach using the Wasserstein distance. We conduct extensive exper-
iments on benchmark datasets and demonstrate experimentally that the 3-WL
expressivity, combined with a node-level distance strategy, enhances performance
in metric learning tasks.

2 Expressive Graph Metric Learning

In order to examine the impact of more expressive GNNs within siamese-based
metric learning architectures, we introduce in this paper the framework shown
in Fig.1. It consists of two main blocks. The first block is the embedding block.
It takes as input the adjacency tensors of both graphs and the node feature
matrices containing the graph signals. This block can produce either a graph
level or a node level embedding of both graphs (see Sec. 2.2). The second block,
which is the metric block, takes as input the graph embeddings and computes
a distance between these embeddings (see Sec. 2.3). Finally, a classical ℓ1 or ℓ2
regression loss is used to train the entire pipeline.

2.1 Inputs

The input of the siamese architecture is a pair of graphs. Let G1 and G2 be two
graphs with n and m nodes, respectively, and let A1 and A2 be their adjacency
tensors of shapes (n×n× e) and (m×m× e), where e denotes the edge feature
dimension. F1 and F2 are two matrices of shapes (m×f) and (n×f) containing
the node features.

2.2 Embedding block

The embedding block consists of two components. The first is a sequence of
3-WL layers (G2N2 or PPGN). It provides embeddings of edges and vertices at
each layer through parameterised functions ϕl and ψl :

E l+1 = ϕl(E l,N l), E0 = A, N l+1 = ψl(N l, E l), N 0 = F, (1)

where the matrix N l and the tensor E l represent, respectively, the embeddings
of the nodes and edges at each layer l. These representations obtained at each
of the L layers of the GNNs are then concatenated :

E = concat(E1, ..., EL), N = concat(N 1, ...,NL). (2)

The second component involves computing either a graph-level or node-level
final embedding by applying an invariant or equivariant readout function. In the
case of graph-level embedding, we use the classical graph-level readout function
of 3-WL architectures:

g = readout(N,E) = concat (sum(N), sum(E⊙ I), sum(E⊙ J)) , (3)

where I is the identity matrix and J is the off-diagonal matrix of ones, both of
size equal to the number of graph nodes. Please note that the sum function is
replaced by the max function for PPGN.

When considering node-level embedding, we propose in this paper the fol-
lowing equivariant readout function:

G = N+
∑
k

E:,k,: with Gi,: = Ni,: +
∑
k

Ei,k,: (4)

Using this equation, each row Gi,: represents a node embedding that also cap-
tures the structure centered on that node. It describes the structural information
by aggregating the edge embedding information related to each node (Ei,k,:) with
the node representation itself (Ni,:).

2.3 Metric block

As shown in Figure 1, two different strategies are used in the metric block
according to the embedding level.

2.3.1 Graph-level distance strategy

The first strategy computes a graph-level distance between the embeddings of
both graphs. In a first step, a siamese MLP embed g1 and g2 into a metric
space g′ = MLP (g). Then the graph distance Dgraph is computed using the
Euclidean distance d between the MLP outputs.

Dgraph(G1,G2) = d (g′
1,g

′
2) (5)

2.3.2 Node-level distance strategy

The second strategy should compute a node-level distance Dnode(G1,G2) between
node embeddings. Since each set of node embeddings can be considered as a
discrete distribution, the Wasserstein distance can be used as in [8]. Considering
two discrete distributions µ = {(xi, pi)}ni=1 and ν = {(yj , qj)}mj=1 with xi, yj ∈
Rn and p,q their probability distributions, the Wasserstein distance is defined as
:

W(µ, ν) = min
π∈Π

(⟨ π, C⟩F) , with Π =
{
π, π1 = p, πT 1 = q

}
, (6)

where C is a matrix containing all pairwise dissimilarities, Ci,j = D(xi, yj). In
the following, we assume that the probability distributions are uniform.

In our case, the node-wise disimilarity matrix C is computed using the pair-
wise Euclidean distance between node embeddings G′

1 and G′
2:

C =

c1,1 · · · c1,m
...

. . .
...

cn,1 · · · cn,m

 , ci,j = ∥(G′
1)i,: − (G′

2)j,:∥
2

2 (7)

where G′ =MLP (G) embeds the nodes representation into a metric space.
Since the graphs G1 and G2 can have a different number of nodes (i.e. n ̸= m),

we use the classical strategy [10], which consists in extending the matrix C with
dummy nodes equal to zero on its smallest dimension, resulting in p = q. In the
following n > m has been arbitrarily chosen defining a new cost matrix C̃:

C̃ =
(
C D

)
with D =

d1,1 · · · d1,n−m

...
. . .

...
dn,1 · · · dn,n−m

 ,di,j = ∥(G′
1)i,:∥

2

2 (8)

Then, the node-level distance is provided by the value of the Wasserstein
distance applied to C̃ as defined in Eq. 6:

Dnode(G1,G2) = W(G′
1,G

′
2) = min

π

(
⟨ π, C̃⟩F

)
(9)

2.4 Model training

In our context of metric learning on graphs, the classical way to learn distances
is to define a regression task on the ground truth distances of the datasets. The
learning weights associated with ψ, ϕ andMLP are updated by backpropagation
of either the ℓ1 or the ℓ2 loss functions.

3 Experiments and results

To showcase the performance of our approach, we conducted metric learning
experiments based on the GED for three datasets: AIDS and IMDB-MULTI

Linux AIDS IMDB

Distance Architecture GED Metrics Time GED Metrics Time GED Metrics Time
strategy MAE MSE s/100p MAE MSE s/100p MAE MSE s/100p

Graph-
level

GREED 0.318 0.172 0.007 0.629 0.634 0.005 3.612 45.347 0.006
G2N2(ours) 0.284 0.213 0.048 0.639 0.663 0.048 3.459 45.584 0.061
PPGN(ours) 0.286 0.221 0.016 0.704 0.806 0.017 3.758 52.187 0.058

Node-
level

SimGNN 0.489 0.443 0.244 0.816 1.075 0.283 28.082 4389.06 0.258
GotSIM - 0.329 - - 0.992 - - 4424.9 -
GEDGNN 0.094 - 0.380 0.773 - 0.408 - - -
GNOME 0.214 0.104 0.2653 0.555 0.490 0.265 2.976 33.433 0.272
G2N2(ours) 0.071 0.027 0.095 0.434 0.297 0.092 2.670 38.43 0.147
PPGN(ours) 0.059 0.028 0.086 0.443 0.316 0.066 2.727 36.238 0.113

Table 1: GED benchmarks evaluation. Methods are grouped according to their
distance strategy. GED metrics are expressed in terms of MSE and MAE (lower
is better, best results in bold). Inference times for 100 pairs are given in seconds.

from TUdataset [13] and Linux [14]. The GED ground truth of these datasets
is provided by [9].

Table 1 shows the results obtained by our framework instantiated at node
and graph levels with G2N2 and PPGN models against several methods from the
literature [9, 7, 8, 11, 12]. The ℓ1 loss is used for training for AIDS and Linux
and the ℓ2 loss for IMDB. Training is done with 200 epochs and batches of 32
graph pairs. The POT library[15] is used to compute the Wasserstein distance.

As shown in Table 1, the node-level strategy outperforms the graph-level
strategy in terms of GED metrics, at the cost of a larger time consumption.
With respect to other methods, our framework with either PPGN or G2N2

outperforms all other methods for node-level distance but shows no improvement
for graph-level distance.

For the graph-level distance: since the datasets do not contain any pair of
1-WL equivalent non-isomorphic graphs1, 1-WL (GIN and GCN) and 3-WL
(PPGN and G2N2) GNNs are both able to separate all the pairs of the datasets
at the graph-level. The difference in the produced graph embeddings does not
allow a better learning of the GED metric for the 3-WL GNNs. It may be that
all the information extracted by the 3-WL GNN is attenuated by the readout
function and the distance calculation.

However, for the node-level distance, Table 1 experimentally shows a large
performance improvement. As the distance strategy readout keeps the more
expressive embeddings that describe nodes and their structural context infor-
mation separated, the greater expressivity of the 3-WL GNNs can fully operate.
Indeed these GNNs show good properties in shape detection and counting, such
as triangles, squares, cycles up to length seven, paths up to length six, and var-
ious other shapes[6]. This is a desirable property when it comes to computing
graph distance. Indeed similarity between graphs can be seen as the number of
common shapes shared by the two graphs.

1We have performed the 1-WL test on all pairs of the datasets.

4 Conclusion and future work

In this paper we have proposed a two-block architecture that computes a graph
metric value. The first block produces embeddings of both graphs by a 3-WL
siamese GNN. The second block uses the Wasserstein distance to compute the
dissimilarity between these graphs. We have conducted experiments that show
the interest of model expressivity for metric learning between graphs when using
a node-level distance strategy. The results obtained outperform state-of-the-art
approaches and show that the node-level strategy gives better results than the
graph-level strategy for metric learning between graphs. Future work will include
the use of edge embeddings directly in the distance computation to achieve finer
matching using the Fused Gromov-Wasserstein distance, another well-known op-
timal transport distance.

Acknowledgments and reproducibility: This work has been supported by
the ANR-20-THIA-0021 and ANR-21- CE23-0025 grants. The source code of
this work is available at https://github.com/aldomos/3WLMLG.

References

[1] B. Weisfeiler and A. Lehman. The reduction of a graph to canonical form and the algebra
which appears therein, Nauchno-Technicheskaya Informatsia, 1968.

[2] K. Xu, W. Hu, J. Leskovec, and S. Jegelka. How powerful are graph neural networks?
ICLR, 2019.

[3] T. N. Kipf and M. Welling, Semi-supervised classification with graph convolutional net-
works, ICLR, 2017.

[4] H. Bunke and G. Allermann, Inexact graph matching for structural pattern recognition,
PRL, 1983.

[5] H. Maron, H. Ben-Hamu et al. Provably Powerful Graph Networks, NeurIPS, 2019.

[6] J. Piquenot, A. Moscatelli, M. Berar, P. Héroux, R. Raveaux, J.-Y. Ramel and S. Adam,
G2N2 : Weisfeiler and Lehman go grammatical, ICLR, 2024.

[7] C. Piao, T. Xu, X. Sun, Y.Rong, K. Zhao, and H. Cheng, Computing graph edit distance
via neural graph matching, VLDB, 2023.

[8] K. D. Doan, S. Manchanda, et al. Interpretable graph similarity computation via differ-
entiable optimal alignment of node embeddings, Conf. on Research and Development in
Information Retrieval, 2021.

[9] Y. Bai, H. Ding, S. Bian, T. Chen, Y. Sun, and W. Wang, SIMGNN: A neural network
approach to fast graph similarity computation, WSDM, 2019.

[10] S. Bougleux, L. Brun, V. Carletti, P. Foggia,B. Gauzere and M. Vento, Graph edit
distance as a quadratic assignment problem, PRL, 2017.

[11] R. Ranjan, S. Grover, et al., GREED: A neural framework for learning graph distance
functions, NeurIPS, 2022.

[12] A. Moscatelli, J.Piquenot et al., Graph node matching for edit distance, PRL, 2024.

[13] C. Morris, N. M. Kriege, F. Bause, K. Kersting, P. Mutzel, and M. Neumann, Tu-
dataset: A collection of benchmark datasets for learning with graphs, ICML Workshop
on Graph Representation Learning and Beyond, 2020.

[14] X. Wang, X. Ding, A. K.H. Tung, S. Ying, and H. Jin, An efficient graph indexing
method, Int. Conf. on Data Engineering, 2012.

[15] R. Flamary, N. Courty et al. POT: Python Optimal Transport, JMLR, 2021.

	Introduction
	Expressive Graph Metric Learning
	Inputs
	Embedding block
	Metric block
	Graph-level distance strategy
	Node-level distance strategy

	Model training

	Experiments and results
	Conclusion and future work

