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Abstract. Boredom is increasingly recognized as a functional emotion
playing an important role in regulating human behavior. Despite contin-
uous advances in the field of artificial intelligence, research on whether
these models can enter emotional states such as boredom remains limited.
However, emotions can be pivotal towards more human-like intelligence in
AI. This paper transfers the regulatory function of boredom into a con-
trol loop modeled with spiking neural networks. Simulations demonstrate
the successful replication of the regulatory mechanism of boredom based
on simulated input. This work provides a foundation for future research
and development towards a self-regulating system based on spiking neural
networks capable of entering a state of boredom.

1 Introduction

The architecture and functioning of the human brain serves as a source of in-
spiration for the field of Artificial Intelligence (AI). Continuous technological
progress has enabled the emergence of sophisticated Machine Learning (ML)
models, which are capable of performing intricate tasks and processing an im-
mense quantity of data. Nevertheless, emotions and related states remain a
relatively underrepresented dimension in Al, despite their apparent significance
in human information processing [1].

Boredom is an emotional state that almost everybody experiences from time
to time. The phenomenon has been the subject of growing research interest
in recent decades, particularly within the fields of psychology and philosophy.
Given its recurring nature, boredom is regarded as a central component in the
regulation of human behavior. However, only a few approaches have been pro-
posed to incorporate the phenomenon in terms of information processing in an
Al-based setting [2, 3, 4]. In the process of enhancing Al towards more human-
like intelligence, emotional states such as boredom may play a central role [5].
Here we introduce a control loop that simulates the regulatory mechanism of
boredom, modeled from a psychological perspective to replicate behaviors ob-
served in humans. The paper is structured as follows: based on a functional



theory of boredom, a control loop consisting of Spiking Neural Networks (SNNs)
is constructed. Subsequently, the dynamic within the loop is investigated via
simulations. Finally, we outline the modifications and adjustments to be ad-
dressed in the next steps.

2 The Functional Theory of Boredom

Despite extensive research, a universally accepted definition of boredom remains
elusive. It is regarded as a multifaceted phenomenon, with its characterisation
dependent on different theoretical frameworks and schools of thought [6]. Nev-
ertheless, the experience of boredom seems to be a common occurrence among
individuals, irrespective of their health status or cultural background.

Boredom can be considered within a functional framework, encompassing
both an informative and a regulative component [7, 8]. First, boredom acts as a
signal, indicating a mismatch between desired and actual levels of engagement
[7, 9]. This discrepancy results in falling out of a zone of optimal cognitive en-
gagement — a kind of Goldilocks’ Zone [9]. As a result of the mismatch, boredom
also represents a call-to-action, pushing the individual to explore for better op-
tions for engagement that would ultimately return them to the Goldilocks’ Zone.
Boredom thereby fulfills its regulatory role when the individual transitions from
a suboptimal state back into a satisfying one [10].

3 Control Loop based on Spiking Neural Networks

SNNs aim to model information processing in a more biologically plausible man-
ner compared to traditional Artificial Neural Networks (ANNs) or ML models.
The individual units are spiking neurons, connected with each other through
synapses. For both neurons and synapses, various models have been proposed,
offering either higher biological accuracy or greater computational feasibility.
SNNs provide insights into mechanisms observed in biological systems by mod-
eling and subsequently analysing them. Furthermore, they can be applied in the
context of classical ML problems [11].

The functional perspective on boredom described in the section above, is
modeled as a control loop (see Fig 1) and implemented in this paper using the
NEST simulator framework [12]. At its core are three spiking neuron popula-
tions representing the level of cognitive engagement, the level of boredom and
the system’s responsive behavior to boredom (control unit). Each spiking popu-
lation is composed of arbitrary 75 Leaky Integrate-and-Fire neuron models [13]
with identical initial parameters. To enable a dynamic behavior within the con-
trol loop, excitatory and inhibitory connections are established both within and
between the populations through static synapses. For biological plausibility, 80
percent of the neurons within a population were defined as excitatory, while 20
percent were defined as inhibitory.

The expected dynamic flow is as follows: the CE population inhibits the
boredom population (B), while the B population excites the control unit (CU).
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Fig. 1: Derived regulatory mechanism of boredom modeled as a control loop:
It is constructed out of three spiking neuron populations (Cognitive Engage-
ment, Boredom, Control Unit) consisting of excitatory (Ne,) and inhibitory
(Nin) neurons. The populations are connected with each other by inhibitory
and excitatory connections. To enable the dynamic, three spike generators are
included (SG1, SG2, SG3).

In turn, CU provides excitatory input back to the CE population. This connec-
tivity schema creates a feedback mechanism where high CE population activity
suppresses boredom. When CE activity drops, it can no longer suppress bore-
dom, which causes boredom to rise. This triggers the CU, which acts to restore
the CE level back to the individual optimal Goldilocks’ Zone. This dynamic
mirrors the tendency to adapt behavior in search of an optimally engaging or
satisfying situation to keep the CE level within the desired zone in a simplified
way.

4 Simulation of the Control Loop

4.1 Setup

The dynamic of the control loop is initiated and sustained by the three in-
cluded spike generators (see Fig 1), each consisting of 15 neurons that fire in
accordance to a Poisson distribution. SG1 (excitatory) and SG2 (inhibitory)
simulate inputs that modulate the level of CE. SG3 (excitatory) is responsible
for continuously driving activity within the B population. This configuration is
designed to emulate the mechanism by which, if CE activity falls below a cer-
tain threshold, boredom increases, prompting the CU to intervene and restore
optimal engagement. We simulated the control loop for 2000 ms.

Initially, SG1 and SG2 are configured with identical firing rates (100 Hz),



maintaining stable activity within the CE population and sufficiently suppress-
ing the activity of the B population. To initiate the regulatory mechanism, the
firing rate of SG1 is gradually reduced from ¢ = 500 ms onward, leading to a
decrease in excitatory input to the CE population, thereby creating an artificial
mismatch in CE activity. As a consequence, the activity within the CE popula-
tion declines progressively until it reaches a level where its inhibitory effect on
the B population (constantly activated by SG3 with a firing rate of 90 Hz) is
insufficient. At this point, the B population activates CU, which acts to return
the system to the optimal equilibrium - the Goldilocks’ Zone.

4.2 Simulation Results

In order to analyze and observe the behavior of the control loop due to the input,
we examined both the raster plots of spiking events of the individual neurons
within the populations and the overall population activity (see Fig 2). We
interpret these pools of neurons as units, referring to the concept of population
coding. For this, we calculated the population activity A(t) as follows [14]:
1 t+At N
A(t):E/t szfjé(t—t;f))dt

Jj=1

The quantity A(t) measures how many neurons in the individual populations
are active, i.e., firing, in a defined time interval (At = 10 ms). The double sum

accounts for the firing events t;f ) of the neurons within the specified population
of size N. The Dirac Delta function d is used to denote a spike. The calculated
activity of e.g. the CE population represents simultaneously the CE level.

We observed that, during periods when no mismatch occurred between SG1
and SG2, boredom was successfully suppressed. Additionally, the CE level de-
creased without the CU being activated. This outlines that the Goldilocks’ Zone
is a range of values and small deviations from a continuous CE level do not
trigger a regulatory response. We defined the lower threshold of the Goldilocks’
Zone retrospectively as the point at which the activity of the CU was greater
than zero. This can be interpreted as the moment the system is trying to re-
enter the zone as the level of boredom has breached a threshold. Once the CU
had restored the CE level back to the Goldilocks’ Zone, the level of boredom
decreased, resulting in a reduction in the activation of the CU. However, as the
firing rate of SG1 continued to decline, this resulted in a subsequent drop out
of the Goldilocks’ Zone, which in turn re-triggered the regulatory mechanism.
At time point £ = 1200 ms, the firing rate of SG1 was reset to its initial condi-
tions, which results in the initial suppression of boredom and no further activity
of CU. To complete the Goldilocks’ Zone, the upper threshold was defined as
being above the highest occurring CE level during the simulations. We success-
fully demonstrated that the psychological model of boredom can be simulated
by means of SNNs.
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Fig. 2: Simulation behavior of the control loop. On the left-hand side, the raster
plot and population activity of the CE population are displayed. The Goldilocks’
Zone is illustrated by the two dashed blue lines. On the right, the raster plot
and population activity of the B population are displayed.

5 Conclusion and Future Work

To the best of the authors knowledge, this work is the first incorporating the
phenomenon of boredom in the field of AT by using SNNs. It models boredom
functionally by translating a psychological theory of the phenomenon into a
control loop based on spiking neuron populations. To investigate the behavior
of this loop, three spike generators were introduced, successfully replicating a
regulatory response driven by an input mismatch. This work presents a novel
approach to modeling emotional states in AT as control loops with SNNs. It offers
an approach for mimicking and studying the responsive behavior of humans to
boredom (trait and state) from a psychological point of view. Furthermore, it
provides a first basis for further developments towards a self-regulating system
capable of entering a state of boredom.

We have not modeled differential inputs to the system - that is, different fac-
tors that may be more or less likely to promote either cognitive engagement or
boredom. Nor have we modeled individual trait differences, most prominently
boredom proneness. Here our aim was to begin with a model of the state of
boredom. Future research could focus on input factors to provide conditions for
the rise of boredom, based on inducing factors derived from experiments with
humans. Furthermore, a mechanism that enables the model to autonomously
identify the Goldilocks’ Zone. This flexibility could mirror the subjective nature
of boredom, where the experiences of individuals may differ. This also refers to
the upper threshold, which is currently defined at the point of the highest CE
level. That is, models of boredom suggest that the state can signal deviation
from optimal engagement at both the upper and lower points of an optimal zone
[9]. Deviations from the upper bounds of the Goldilocks’ Zone were not directly
tested here, but should evince the same behavior in the respective populations.



Lastly, further research will focus on how the model can respond to boredom,
aiming to develop adaptive strategies for managing this state. This may also pro-
vide a foundation for further research exploring why some individuals experience
greater challenges in eliminating boredom than others.
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