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Abstract. Neural Additive Models are inherently interpretable mod-
els that can be applied to tabular data. However, when applying these
models to images the value of a given pixel is not a meaningful feature
for understanding the model. For that reason, we propose INAM - Image
scale Neural Additive Model - a combination of trainable feature extrac-
tors and NAMs. We show INAMs can be successfully applied to image
data sets with low variability while allowing global explanations of the
models and data point-specific explanations.

1 Introduction

Generalized Additive Models are a well-established method to solve supervised
machine learning tasks [1]. Here, we fit a separate function for each variable
to predict the target. For that reason, the influence of each variable is easily
accessible for interpreting the overall model. Recent developments led to the
introduction of Neural Additive Models where each function of a Generalized
Additive Model is a neural network [2]. Further approaches introduce feature
interaction [3] or improve the overall performance [4]. However, a common
limitation is that these models are only applicable to tabular data with mean-
ingful variables. This is contrary to the current trend of preferring data-driven
feature extraction.
In this paper, we propose to improve upon the Neural Additive Models by using
a deep projection pursuit approach [5] to extract interpretable features that are
then combined with Neural Additive Models. We call these models Image-scale
Neural Additive Models (INAMs). We show how INAMs can be visualized to
get insights into the overall model or how the decision for a given data sample
is made. Moreover, we show the current limitations concerning the variability
of the data set.

2 Method

INAMs extend Neural Additive Models to address image classification tasks
(depicted in Figure 1). First, for an input image x we use a convolutional
layer with N interpretable kernels K(l) ∈ Rn×n×c , with l ∈ {1, ..., N}, kernel
size n and channels c, to extract feature map F (l)(x) = x ∗K(l). The kernels
in this layer correspond directly to detected features. Next, we apply global
max-pooling Xl = max(F (l)(x)) to get the maximal detection. Additionally,
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Fig. 1: Overview of INAM. We extract features with a single convolutional
layer and global max pooling. The resulting feature activations are processed
by a neural additive model.

this gives us a location corresponding to the feature, making data-dependent
explanations easier. Afterwards, we apply a NAM to solve the classification
task whilst allowing us to interpret the influence of the detected features. Af-
ter training, we adapt the output of the NAM as follows.

g̃l(Xl) = gl(Xl)− ḡl +
1

N

N∑
i=1

ḡi.

Here, gl(Xl) : R → RK is the output after the training, and the calculated
mean over the training samples D is given by ḡl =

1
|D|

∑
x∈D gl(Xl(x)). By

adding the terms −ḡl+
1
N

∑N
i=1 ḡi we center the function and equalize the bias

for all functions. This reparameterization simplifies the comparison of function
values.
As mentioned, the convolutional layers should employ interpretable kernels ,
which does not need to be the case without adding constraints. Hence, we
propose to employ Total Variation (TV) [6] to reduce noise within the kernels,
which increases the visual interpretability. According to [7], the TV is given by
the sum of the total variation per kernel. This means the TV of our model is
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(1)
Minimizing this term suppresses high-frequency information and makes coarse
structures more apparent by making neighboring positions more similar.
The second important property of the kernels is their independence to avoid
interaction between different features. For that, we propose regularizing the
kernels to be orthonormal since differentiable orthonormalization would add a
significant cost to the model. This means we minimize the distance to the unit
matrix as:

Ω(K)ortho =
1

2
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(
∑
h,w,c

K
(i)
h,w,cK

(j)
h,w,c − δi,j)

2 (2)



where δi,j = 1 if i = j and δi,j = 0 else. With this the overall loss is Ltotal =
Ltask(INAM(x), y) + αTV Ω(K)TV + αorthoΩ(K)ortho With this definition of
our model, we can show possible visualizations to understand what the model
has learned.

2.1 Visualization

Global Interpretation Given a trained model, we want to understand what
the model has learned. INAMs have the advantage of being inherently inter-
pretable. One part of this is the choice only to use a single convolutional layer
because we directly see what kind of features lead to higher activation as visi-
ble in Figure 2. In contrast, approaches such as classification-by-component[8]
rely on a feature extractor that is an injection which is not guaranteed. More-
over, we can directly benefit from NAMs, which give us a visualization of the
function depending on the strength of the feature. This means we can plot
feature strength against influence on the class as visible on the right in Fig-
ure 2. Additionally, we include the density of the data distribution by shading
the background, which shows how the corresponding feature is distributed. For
example, Figure 2 presents a kernel detecting an arch shape. As indicated by
the corresponding function, a high max pooling value for this kernel suggests a
prediction of the digit "2" or "3", aligning with the discernible pattern evident
in the kernel image.
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Fig. 2: Kernel with Corresponding Function on MNIST.

Local Interpretation In addition to making the model overall interpretable,
we aim to explain the decision for a certain class for the input image using
a decision image. Here, the idea is to determine all kernels K(l) for a class t
such that g̃l(Xl)t > g̃l(Xl)k∀t ̸= k. These kernels are then weighted by their
function value and added to the position corresponding to Xl.
Figure 3(center) illustrates the decision image of the correctly classified input

image with the label "two" (left). Notably, the lower-left part of the digit and
the arch at the top are highlighted as crucial components. Analogously, we
can analyze which parts in the image are taken as evidence for another class in
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Fig. 3: Visualization of Decision Maps with respect to an image (left) for INAM
predicting the class "two" correctly with respect to the class "two"(center) and
the class "five"(right).

Figure 3(right). Here, we plot the decision image with respect to the class label
"five". Even though the model gives the class "two" a probability of 99.99%,
there is still evidence for other classes due to common patterns between classes.
In the figure, we see the model could have identified the upper part of the class
"five" near the bottom of the image.
Further, we want to evaluate whether this visualization represents the predicted
class. For that, we only keep the positive parts of the visualization and scale to
[0, 1]. Focusing on the positive part can introduce some errors since it ignores
negative reasoning. However, in the other case, we leave the data distribution
since the original input data is also in the range [0, 1]. Afterwards, we check
if the model predicts the same class for the decision image. Analyzing the
complete validation data set shows that 81.98% are assigned to the same class.
This means that a positive explanation alone does not imply the same class.
However, in many cases, we can assume that the explanation is characteristic
of the predicted class.

3 Performance

In this section, we evaluate INAMs on three image data sets: MNIST [9],
CIFAR [10] and a histological colorectal cancer data set (CRC) [11]. MNIST
helps to show how the interpretation works since it is easy to understand.
CIFAR and CRC show the applicability to different color data sets. CIFAR
has a large variety within and between classes, whereas the CRC data set is
more simplistic due to the similar appearance of tumors in tissue slides.
The general setup of INAM follows the NAM architecture [12] with three linear
layers with 64, 64, and 32 units utilizing the ReLU activation and an output
layer with as many units as classes in the task. We train each model using the
Adam optimizer with default parameters [13] for 10 epochs on MNIST and 20
epochs on CIFAR and CRC. Furthermore, we search for good hyperparameters
employing a grid search over the number of kernels N , the kernel size n, the
strength of the orthogonal regularization (αortho) and the TV regularization



(αTV ).
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Fig. 4: Influence and training accuracy with respect to regularization terms
for kernel size 9 (-) and kernel size 13 (- -) for models trained on MNIST. We
assume the weights to be zero unless otherwise suggested by the figure.

First, we investigate the influence of the choice of our weighting terms on
the model performance with different kernel sizes. The results of this can be
seen in Figure 4. Here, we see that the orthogonality loss only slightly increases
the orthogonality of the kernel. Furthermore, the loss leads to a slight decrease
in accuracy, which is less if the kernel size is larger. The TV loss barely changes
with the weighting term. Interestingly, a small value for αTV leads to a better
performance than αTV = 0.
In addition to the evaluation of the weights, we also need to consider the per-
formance in comparison to similar models shown in Table 1. Here, we can make
two observations. First, if the patterns in the data set have a low variability,
INAMs perform on par with comparable models, as seen in the performance
on MNIST and CRC, where all models are simplistic and interpretable. Sec-
ond, when the variability of patterns in the data set increases, the performance
is significantly worse than in performance-focused models, as evident by the
performance on CIFAR-10.

Data Set Method (N,n,αortho,αTV) Accuracy
MNIST INAM (256, 13, 0.05, 0.05) 0.9920

Linear Model - 0.9385
CIFAR-10 ResNet110 [14] - 0.9357

INAM (256, 15, 0.5, 0.01) 0.6018
CRC[11] RBF [11] - 0.8740

INAM (256, 15, 0.5, 0.01) 0.8725

Table 1: Performance of INAM in comparison to existing approaches. INAMs
do not scale to data sets with a large variability of patterns.

4 Conclusion

In this paper, we propose INAMs that scale NAMs to image-scale while in-
heriting their interpretability. We focus on image classification and elaborate



a methodology that transforms the input images using convolution and max
pooling. Furthermore, we introduce visualization for explaining INAMs as a
whole or specifically for a single sample. Finally, we show that INAMs perform
well as long as the variability of patterns is not too large. This means INAMs
are a promising approach for explainable image classification.
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