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Abstract. Representing an image as a graph captures its spatial and
contextual relationships effectively. Using Graph Neural Networks (GNNs)
on graph-based images has considerably enhanced image segmentation.
This paper investigates Multi-View GNNs for image segmentation, com-
paring Intermediate and Late Fusion methods. Experiments show that
Intermediate Fusion achieves high accuracy on synthetic data by integrat-
ing relational features upfront. On a real dataset, Late Fusion methods,
particularly RVCons, outperform Intermediate Fusion by dynamically ag-
gregating multi-view predictions. Indeed, Late Fusion effectively mitigates
issues arising from view-specific noise and variance. The results underscore
the complementary strengths of both fusion strategies.

1 Introduction

Image segmentation is crucial for tasks like autonomous driving and medical
imaging, aiding analysis and understanding spatial relationships between ob-
jects [1]. Deep learning has significantly improved segmentation accuracy, but
often struggled to capture complex spatial and contextual dependencies. High-
level structural information can be effectively represented using graphs, where
nodes embody objects or regions of interest, and edges encode spatial rela-
tionships or contextual information between these elements. Traditional graph
matching methods, typically framed as quadratic assignment problems, can rep-
resent spatial relations accurately but are computationally demanding [2]. In
contrast, combining Deep Neural Networks (DNNs) with Graph Neural Net-
works (GNNs) offers a powerful alternative to explore graph-based structures.
Here, graphs model the structural information, while GNNs enable learning and
decision-making from these graph representations, enhancing applications across
domains such as molecular modeling and image segmentation [3, 4]. Besides,
incorporating heterogeneous graphs or multi-view representations can enhance
image processing tasks by capturing various complementary aspects of the data,
such as texture, color, and spatial relationships, which are crucial for accurate
segmentation. Multi-view GNNs (MVGNNs) have recently demonstrated the

*The authors would like to express their gratitude to Angers Loire Métropole and Université
Catholique de I’Ouest for their financial support and contributions to this project.



capability to manage these heterogeneous relationships by integrating diverse
data perspectives. By representing different aspects of the data, MVGNNSs facil-
itate the integration of complementary information, and improve classification
accuracy [5]. Research studies illustrate the advantages of fusing multiple graph
views to improve classification accuracy in complex datasets [6].

This paper proposes two MVGNN architectures for segmentation: an Interme-
diate Fusion (IF) model that concatenates the resulting GNN outputs in an
end-to-end framework, and a Late Fusion (LF) model that processes each view
independently and aggregates predictions for enhanced robustness. We compare
these architectures across synthetic and real-world data sets, demonstrating the
strengths of each fusion approach under varied conditions.

2 Methods Overview
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Fig. 1: Overview of the proposed approach

2.1 From Images to Multigraphs and GNN Processing (Step 1)

Given an image to be segmented, a DNN generates a segmentation map S €
RP*C where P represents the spatial dimensions of the image and C' the number
of classes, associating each pixel p with probabilities S(p, ¢) of belonging to each
class c. Based on these probabilities, a set R is constructed, consisting of all
connected components of pixels that preliminarily belong to the same class.
These regions are used to form a graph G = (V, E, X, A), where V denotes
the nodes (regions), E the edges between nodes, X the node attributes, and
A the edge attributes of dimension d. To capture diverse spatial relationships,
multiple graph views G1,...,G are created, each representing specific spatial
or structural attributes (e.g. distance, orientation), thus forming a multigraph



M = (Gy,...,Gr) with L distinct views. After Step 1, the process branches
into Step 2a or Step 2b.

2.2 Late Fusion - General Consensus Function (Step 2a)

For LF method, each graph view G, is independently processed by a GNN fol-
lowed by a single layer perceptron. The GNN used includes a convolution layer,
implemented as an edge-conditioned convolution operator (ECConv) [4], to lo-
cally aggregate information by updating node attributes. The SLP computes
class probabilities based on the updated node features. The learning process is
performed step by step.

To unify the information from each view, we define a consensus function that
operates on the probability membership outputs of the GNNs across the views.
Let P, € RIVIXC represent the probability membership matrix predicted by the
GNN for view G;. Each entry P;(i,j) in the matrix denotes the probability
that node i belongs to class j in view ;. The consensus function, denoted as
Consensus(Py, Py, ..., Pr), aggregates these probability membership matrices
from all views to produce a unified segmentation output Peonsensus € RIVIxC,
This function can take various forms adapting dynamically to the characteristics
of each view and leveraging the strengths of the combined predictions.

2.3 Intermediate Fusion - General Concatenation Function (Step 2b)

For IF, each view is processed through a dedicated GNN convolutional layer,
capturing its unique features, and the resulting representations are concatenated
to form a comprehensive feature space. This concatenated representation effec-
tively integrates the information from all views early in the model’s workflow
and is then passed through a multi-layer perceptron (MLP) for final predictions.
The entire process is trained end-to-end in a single optimization step, ensuring
that the features from all views are jointly refined and leveraged throughout the
model early on.

Step 3 reassigns for each region its class based on the predictions of Step 2a
or 2b, to reconstruct the final segmentated image.

3 Experimental setup and Datasets

3.1 Datasets

A synthetic dataset is created based on a reference image containing 7 re-
gions/classes: 6 distinct classes and a background class (Fig. 2). Each region,
excluding the background, is represented as a node with a class probability vec-
tor. 3 graph views capture different spatial relations ; (1) undirected edges with
a distance attribute, (2) directed edges indicating vertical relationships, and (3)
directed edges indicating horizontal relationships.

A real dataset, FASSEG!, is also used. It contains 70 human face images with

LFASSEG: https://github.com/massimomauro/FASSEG-repository



Reference Altered images

Fig. 2: Overview of the synthetic dataset: Reference image, its altered versions, and
corresponding multi-view graph representations

9 classes (regions annotated as hair, eyes, etc and including background). 5
graph views are created based on spatial relationships. The first view represents
distance-based min-max undirected edges. The second view encodes angular
relationships as directed edges with three attributes. The third view captures
boundary-sharing relationships through undirected edges, with shared space as
the edge attribute. The fourth view represents vertical binary relationships as
directed edges, while the fifth view represents horizontal binary relationships as
directed edges.

3.2 Experimental Protocol

For the synthetic dataset, a set of 100 images for training/validation and 50
images for testing is generated. Subsets are created by randomly selecting images
from the initial set as follows : 10 draws of 50, 20, and 10 training images, with
respectively 15, 10, and 5 validation images; and 25 draws of 5 training and 5
validation images. A model is trained on each subset, with 300 epochs using
validation accuracy as stopping criteria. An Adam optimizer (learning rate of
0.01, weight decay of 5e-4) and StepLR scheduler (decay factor 0.5 every 50
steps) are used.

For FASSEG, the dataset is split into 20 training/validation images and 50
test images, with U-Net as the segmentation backbone [7]. Subsets are created
with 4 draws of 15 training/5 validation images and 4 draws of 5 training/2
validation images. Training parameters (epochs, stopping criteria, optimize and
scheduler) are identical to those used for synthetic dataset. To evaluate accuracy,
we use the Dice Similarity Coefficient (DSC), bounding box Dice index (B-DSC),
and Hausdorff distance (HD) to measure overlap, spatial extent, and alignment.

For LF, a consensus function is used to obtain a consensus segmentation out-
put. Consensus techniques used in our experiments include: Mean Consensus
(averages class probabilities), Median Consensus (minimizes the influence of out-
liers), Majority Voting [8], RV Cons [9] (weights views using a similarity metric,
RV, to refine consensus by reducing inconsistent views), and Attention-Based
Consensus (dynamically weights views based on relevance, projecting them into
a shared space to compute normalized attention scores for adaptive weighting).



4 Results

4.1 Synthetic Data

As seen in Table 1, consensus methods consistently outperform single-view mod-
els by effectively aggregating information across views. Concatenation stands
out on synthetic data, maintaining high accuracy across all training sizes. The
resilience of the consensus and concatenation methods suggests that these ap-
proaches provide robustness under limited data conditions.

Number of Training Images

Method 50 Images 20 Images 10 Igrnagesg 5 Images

View 1 0.81 £0.02 0.74 +0.04 0.74 £0.03 0.70 £0.04

View 2 0.73 £0.04 0.67 £0.07 0.66 £ 0.06 0.63 £0.08

View 3 0.83 £0.02 0.76 £ 0.09 0.69 £0.05 0.68 £ 0.08

Mean Consensus 0.94 + 0.02 0.94 +0.02 0.92 £0.03 0.87 £0.04

Median Consensus 0.91 +0.02 0.89 £ 0.02 0.87 £0.03 0.83 £0.05

Majority Voting 0.85 £ 0.02 0.82 £ 0.02 0.83 £0.04 0.78 £0.05

RVCons 0.90 £ 0.02 0.90 £ 0.02 0.88 £0.03 0.85 £+ 0.04

Attention Consensus | 0.93 £ 0.02 0.94 £+ 0.02 0.92 £0.03 0.87 £0.04
Concatenation 0.99 + 0.00 0.99 + 0.00 0.98 + 0.02 0.96 + 0.01

Table 1: Mean and Standard Deviation accuracy of the synthetic data.

4.2 TFASSEG Dataset

As shown in Table 2, single-view methods perform adequately with 15 training
images, but degrade with 5. With 15 training images, the single-view model
(View 1) performs similarly to multi-view models, while being simpler and less
computationally expensive. In contrast, for 5 training images, multi-view meth-
ods, especially LF methods - RVCons, outperform single views by dynamically
aggregating information across views. These findings underscore the adaptabil-
ity of consensus approaches in handling real-world segmentation tasks.

15 Training Images 5 Training Images

Method DSC BEDSC o EFD DSC BDSC o
NN 070 £0.01 | 050 £ 001 | 3740 E1.01 | 071 £004 | 0.56 £0.06 | 54.13£12.69
View 1 0.70 £ 0.01 | 061 £001 | 27.05 098 | 0.68 £0.04 | 0.57£0.04 | 53.34 L 12.58
View 2 0.67 £0.04 | 057 £0.03 | 42.568£18.57 | 062£009 | 052 £0.00 | 74.34 £21.99
View 3 0.70 £0.01 | 0.61£001 | 2839 £040 | 067 £004 | 0.56£0.05 | 59.86 £11.34
View 4 0.70 £0.01 | 061 £001 | 28.47£1.10 | 050£0.13 | 0.42£0.12 | 119.9 £48.70
View 5 0.67 £0.05 | 058 £0.05 | 39.56 £18.04 | 058 £0.11 | 0.48 £0.10 | 92.73 £35.36
Mean Cons. | 0.70 £0.01 | 061 £0.01 | 27.52£0.97 | 0.71£0.04 | 060 £0.05 | 41.95%10.64
Median 0.70 £ 0.01 | 0.61£0.01 | 27.656 £0.55 | 071 £004 | 0.60£005 | 41.75 £9.43
Majority 070 £0.01 | 0.60L0.01 | 27.88 £0.85 | 071 £0.04 | 0.60£0.05 | 42.39 £ 10.41
RVCons 0.70 £0.01 | 0.61 X001 | 27.48£079 | 0.72£0.04 | 0.60 £0.05 | 40.50 £9.46
Attontion 0.70 £ 0.01 | 0.61 £0.01 | 27.42 £1.07 | 071 £0.04 | 0.60 £0.05 | 41.33 £10.59
Concat. 0.70 £ 0.01 | 0.60 £0.01 | 29.31 £0.36 | 0.69£004 | 0.58 £0.06 | 47.92 £10.92

Table 2: Performance metrics for different methods with DSC, BDSC, and HD for 15
and 5 Training Images.

Figure 3 provides a visual example of how RVCons improves segmentation by cor-
recting errors found in individual views. Each single-view segmentation shows
inconsistent errors caused by limited data. However, RVCons effectively in-
tegrates information across views, correcting errors and yielding a result that
closely resembles the ground truth.
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Fig. 3: Segmentation Example for image trained with 5 images with Error Regions
Marked in White Boxes
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5 Conclusion

This study evaluated the effectiveness of MVGNNs for image segmentation.
By leveraging information from multiple views, MVGNN outperforms single-
view GNNs, particularly under limited training data. Comparing IF and LF
approaches, the results highlight the complementary strengths of both fusion
strategies. IF excels in scenarios where intermediate integration of features helps
uncover joint patterns across views, making it ideal for homogeneous datasets. In
contrast, LF demonstrates its advantage in complex, noisy environments by pre-
serving view-specific processing and enabling adaptive integration of predictions.
These findings suggest that the choice of fusion strategy should be tailored to the
nature of the dataset. This comparison underscores the importance of under-
standing the interplay between data characteristics and fusion strategies when
designing MVGNN architectures for multi-view image segmentation tasks.
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