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Abstract. An interpretable approach to classification learning using
cross-entropy loss is the Probabilistic Learning Vector Quantizer (PLVQ)
as a robust prototype-based classifier. We propose a variant of the
PLVQ, that allows the integration of domain knowledge. This strategy is
becoming increasingly popular as a means of developing intelligent models
that can enhance performance and gain acceptance from domain experts.
In this paper, we put forth the idea of incorporating externally known class
relations as supplementary information. We present theoretical aspects of
the model and demonstrate its capabilities through numerical experiments.

1 Introduction
Learning of classification schemes is one of the most required tasks in machine
learning. Frequently, classification learning is challenging due to problems
like complex classification scenarios, high data dimensionality, and overlapping
classes. One possibility to deal with the latter problem is to apply probabilistic
classifiers such as Deep Multilayer Perceptron Models (DMLP) with cross-
entropy loss [6]. Another strategy to deal with these difficult situations is to
apply additional mathematical constraints for regularization. However, a more
promising strategy would be to use additional knowledge about the data for
regularization instead, if available [20]. Furthermore, an appropriate integration
of external knowledge can contribute to a better explainability of the learned
classifier model [4]. However, this aspect is limited, if the model in use does not
constitute an interpretable approach such as DMPLs. Fortunately, interpretable
classifiers for probabilistic decision making are known based on the learning
vector quatization paradigm [15, 16]. In particular, Probabilistic Learning
Vector Quantization (PLVQ) has been introduced to enable probabilistic class
assignments for both training data as well as model decision using the Kullback-
Leibler Divergence (KDL) for class assignment comparison [17]. Recently, a
knowledge-informed learning vector quantizer has been established in the context
of classification of gene expression data using external correlation information on
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gene expression behaviour [19]. The common path to knowledge-based learning
is the availability of data-specific knowledge.[20, 4, 5].

In this paper, another type of external knowledge is used to improve
classification learning: We assume that additional information about structural
dependencies or relations between classes is available. We will show how
this knowledge can be integrated in PLVQ using a respective Class-Relation-
Knowledge-Graph (CRKG), which requires an appropriate redefinition of the
KDL.

The paper is structured as follows: First, PLVQ is briefly reconsidered.
Thereafter, we describe, how the class-knowledge can be integrated into PLVQ
and how KDL has to be adjusted accordingly. Exemplary, numerical experiments
validate the approach followed by concluding remarks.

2 Cross-Entropy Learning in PLVQ
Learning Vector Quantization (LVQ), as introduced by T. Kohonen [12],
assumes a set W = {w1, . . . ,wN} of prototypes wk ∈ Rn to represent and
to classify data x ∈ Rn. For this purpose, each prototype is assigned to be
responsible for a certain class by the class label c (wk) ∈ C = {1, . . . , C}. Each
class is represented by at least one prototype. For the probabilistic variant
(PLVQ, [17]) a training data set of observed pairs (X,T) = {xi, ti}ND

i=1 is
supposed where ti ∈ [0, 1]

C provides the probabilistic target class information
of the sample xi with class components tic ∈ [0, 1] and

∑
c tic = 1. For unique

mutually exclusive classification training data tic ∈ {0, 1} is required.
PLVQ delivers after training a probabilistic class assignment vector pW (x) =

(pW (1|x) , . . . , pW (C|x)) with

pW (c|x) = PW (x, c)

PW (x)
(1)

as the predicted class probability of the model such that
∑C

c=1 pW (c|x) = 1 is
valid. Thereby, PLVQ considers

PW (x) =

N∑
j=1

p (x|wj) p (wj) (2)

as the probability density for x generated by the model with the prototypes
W = {w1, . . . ,wM} as model parameters and p (x|wj) is the probability that x
is generated by the jth model component determined by the prototype vector
wj . The probabilities p (wj) are the priors for the model components. Further,
the model based estimator of the joint probability for x and an arbitrarily given
but fixed class c ∈ C is

PW (x, c) =
∑

j:c(wj)=c

p (x|wj) p (wj) (3)

as already suggested in [16]. The local loss to be optimized by PLVQ is the



Kullback-Leibler Divergence

DKL (ti||pW (xi)) =
∑
c

tic · log
(

tic
pW (c|xi)

)
(4)

= HS (ti)− Cr (ti,pW (xi))

where HS (ti) is the prototype-independent Shannon entropy of the target and

Cr (ti,pW (xi)) =
∑
c

tic · log (pW (c|x)) (5)

is the prototype dependent cross-entropy term [13, p. 221ff]. Yet, other
divergences are possible [17]. Learning in PLVQ takes place by stochastic
gradient descent learning (SGDL) with respect to the prototypes W determining
the model class assignment pW (xi). For this purpose, the probabilities
p (x|wj) have to be defined, frequently taken as Gaussians pΩ (x|wj) =

exp
(
−∥Ω (x−wj)∥2

)
using an adjustable mapping matrix Ω [14, 1], which is

also trained by SGDL. The prototype priors usually are chosen as p (wj) =
1
N .

3 Integration of Class Relation Knowledge
As mentioned in the introduction, now we assume additional knowledge
regarding the class relations is provided by a Class-Relation-Knowledge-Graph
K as known from general knowledge graph approaches [5]. More specifically,
we assume that class relations are given as similarity values Kij ∈ [0, 1],
i, j = 1, . . . , C with Kii = 1. If Kij = 0 is valid, no relational class knowledge
between the classes i and j is available. These values are collected in the matrix
K ∈ [0, 1]

C×C . The class relational knowledge is included into the PLVQ by the
modified targets τ i = K · ti for the sample xi. Yet, the new targets τ i are not
longer probabilistic vectors, because the vector entries do not necessarily sum
up to one. Instead, we have

∑
c τic ≤ C with still τ ic ∈ [0, 1] being valid, i.e.

τ i is a possibilistic vector. Hence, we have to replace the KLD in (4) by the
adjusted KLD

DaKL (τ i||pW (xi)) =
∑
c

τic · log
(

τic
pW (c|xi)

)
− (τic − pW (c|xi))

proposed in [2, 18] for possibilistic vectors. Again, learning takes place as
SGDL for DaKL with respect to the prototypes contained in W as well as to
adapt the mapping matrix Ω. Yet, the predicted class probabilities pW (x) =
(pW (1|x) , . . . , pW (C|x)) remain to constitute a probabilistic vector.

We refer to this approach as class-informed PLVQ (CI-PLVQ).

4 Numerical Simulations
We tested the approach for two real world datasets denoted as Wine red/white
and Wilson.



CI-PLVQ PLVQ GLVQ CI-PLVQ PLVQ GLVQ
Wine red 0.304 0.383 0.410 0.517 0.614 0.825
Wine white 0.405 0.483 0.479 0.727 0.832 1.17
Wilson 0.277 0.292 0.404

Table 1: The mean weighted test error for the different data sets and algorithms
(left) and the mean absolute error for the ordinal regression problems (right).

Data Description The first data Wine red/white set is a classical problem of
ordinal regression and the task is to predict the wine quality (levels from 3 (poor)
to 9 (excellent)) using the information of overall 11 physicochemical features
(input) and the sensoric classification (quality level) [3]. The data set is divided
into 1599 data samples of Portuguese "Vinho Verde" red wines and 4898 of white
wines. The related class relation knowledge matrix KWine is derived from the
underlying regression problem with the matrix entries [K]Wine

i,j = exp (−|yi − yj |)
where yi ∈ {3, . . . , 9} are the levels of the available classes.

The second data set Wilson comes from the medical diagnostic area with the
task to classify patient neurological impairment profiles obtained from a 18F-
Fluorodesoxyglucose-Positron-Emission-Tomography ([18F]FDG-PET,[7]). The
patients suffer from Wilson disease, which is an autosomal-recessive disorder
of copper metabolism leading to neurophysiological impairments. Thus, in the
initial non-neurologic phase, impairments are negligible or at least not defacing,
whereas later on (neurologic phase) the disturbances become severe [10] with
a smooth transition between both phases. The non-neurologic phase can be
divided into 3 sub-types (1 - pseudo-sclerotic (PS), 2 - pseudo-parkinsonic (PP),
3 - merged type) whereas the non-neurologic phase contains to sub-types (4 -
hepatic type (HT), 5 - asymptomatic type (AT)); for neurological considerations,
healthy volunteers (6 - volunteers (VT) can be seen as to be in the non-
neurological phase [9]. The respective clinical class relations are collected in
the knowledge matrix KWilson to be used as the domain knowledge in CI-PLVQ.
The matrix KWilson is depicted in Fig. 1a.

The neurological impairments profile for each patient/proband consists of a
11-dimensional vector with the normalized glucose consumption in different brain
regions (frontal lobe,parietal lobe, temporal lobe, occipital lobe, ant. cingulum,
post cingulum, putamen, caput nuclei caudati, cerebellum, midbrain, thalamic
area), which are measured by [18F]FDG-PET [8]. A detailed data description
can be found in [7, 11].

Data Analysis and Results To compare the results and obtain a meaningful
performance metric, the integrated class relation information has to be taken
into account for result evaluation. Thus we apply the weighted error

wErr(C,K) = ∥C ◦K∥

in this paper, where C is the confusion matrix, K refers to the class relation
matrix in use, and ◦ denotes the Hardamard product.

The results for both datasets are depicted in Tab. 1. We observe a moderately
improved performance for the proposed CI-PLVQ if we compare with standard



Fig. 1: Wilson Disease data: (a) - knowledge matrix KWilson, (b-d) resulted
relative confusion matrices by CI-PLVQ(b), PLVQ(c), and GLVQ(d). The axes
are the Wilson-subtypes, see text.

PLVQ and GLVQ. Hence, the class relation knowledge contributes to better
predictions. This statement is underlined by the evaluation of the corresponding
relative confusion matrices as visualized in Fig. 1b-d: The CI-PLVQ matrix fits
best to the class relations matrix.

5 Conclusions
In this contribution, we examine the potential for integrating external class
relation knowledge into the probabilistic variant of LVQ (PLVQ), a prototype-
based classifier. The relational information serves as additional knowledge for the
classifier training. The respective loss function is the cross-entropy loss based
on an adjusted Kullback-Leibler divergence to deal with possibilistic vectors.
The theoretical framework is provided, and the behaviour of the approach is
illustrated for two data sets. One of these is the classification of Wilson disease
patients based on [18F]FDG-PET-analysis. Here, with the help of the CI-PLVQ,
fewer data points are misclassified between the two stages of neurological and



non-neurological/volunteers in contrast to the PLVQ/GLVQ.
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