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Abstract. Simulating fluid dynamics is challenging due to the computational
complexity of processing high-dimensional data, which often requires significant
time. Fluid behavior is typically governed by partial differential equations (PDEs),
and the complexity escalates when obstacles disrupt the flow, reinforcing vorticity
formation. Vorticity describes the local rotational motion of a fluid. In this pa-
per, we present a data-driven approach to automate PDE simulations and develop
surrogate models to generate fluid dynamics based on the Kármán vortex street.
Our approach aims to generate accurate fluid simulations with faster computation
through architectural adjustments.

1 Introduction

Computational fluid dynamics (CFD) uses mathematical models and computational
frameworks to address fluid flow challenges, replicating fluid behavior through pre-
defined boundary conditions [1]. Differentiable PDE operations can be a useful ap-
proach for simulating complex fluid phenomena, such as flows with varying vorticities.
High-speed supercomputers are essential for achieving efficient solutions, especially
for large-scale, intricate problems.

The PhiFlow simulation toolkit, a differentiable PDE-solving framework, is de-
signed for optimization and machine learning applications [2]. Its integration with ma-
chine learning frameworks simplifies the development of differentiable functions that
seamlessly combine learning models and physics simulations.

A key challenge is the slow execution when using differential equations in pro-
gramming. To address this, we propose surrogate machine learning models based on
CNN-LSTM layers [3][4], enabling faster fluid dynamics simulations while maintain-
ing precision.

2 Related Work

Several attempts have been made in the literature to develop surrogate models for CFD.
Some focus on using optimization strategies to guide and control the generated flow,
such as Forrester’s study [5], which employs a two-stage surrogate model: construc-
tion and evaluation. If accuracy is insufficient, the model returns to stage one. Schae-
fer’s study [6] applied a surrogate model error estimation technique, using withheld test
points to estimate discretization errors and uncertainties in the airfoil problem. Addi-
tionally, some studies explore active flow control in CFD simulations using deep rein-
forcement learning and model-free methods to handle continuous actions [7][8].



Incorporating physics-informed data can significantly enhance the performance of
the surrogate model [9]. However, we observe that applying the incompressible Navier-
Stokes (NS) equations introduces certain losses in the simulator’s behavior. These
losses are likely due to the discretization of the continuous flow governed by the PDEs
equations and the inherent complexity of the governing matrix, particularly the interac-
tions between pressure and velocity fields. Therefore, this study focuses on refining the
surrogate model architecture to explore the potential for improving performance and
generating accurate dynamic fluids with time efficiency through architectural adjust-
ments.

3 Methodology

CFD simulator generates flow based on pressure, velocity, and specific obstacles.
The environment has two horizontally placed cylinders with a specific distance be-

tween them. Since the cylinder properties remain fixed and only the distance can vary
from one experiment to another which leads to unique vorticity formations, we used the
distance as input to the surrogate model.

Pressure and velocity inputs are complex due to their multi-dimensional nature.
CNN layers are used to downsample the data, reducing dimensionality while retaining
key information [3]. An LSTM layer [4] is added to create local memory and preserve
historical data. The updated pressure and velocity outputs are fed back into the model
for the next timestep, forming closed loops.

However, closed loops predictions may expose the system to mismatch data and
compound error.

We address data complexity and system vulnerability by splitting the surrogate
model into two sub-models, each focusing on either velocity or pressure. We reduced
the mismatch data and compound error by using the simulator as a helper in which dur-
ing the training stage, the sub-model of velocity will receive the actual pressure, and the
sub-model of pressure will receive the actual velocity. In other words, we not only use
the actual velocity and pressure data from simulator to calculate the losses of the pre-
dicted ones, but also as a learning guide as shown in the fig 1. For testing, the simulator
inferences are replaced by the model’s output

For convergence and optimization, mean squared error (MSE) between the pre-
dicted data and the actual data is used as loss function 2, in addition to including physics
information derived from the incompressible Navier-Stokes (NS) equations 1:
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For an incompressible flow, we used a simple buoyancy model (the Boussinesq
approximation) via the term (0,1)T ξd. This approximate changes in density for incom-
pressible solvers. We assume a gravity force acts via the vector (0,1)T . We solved this



Fig. 1: Learning is boosted, and mismatched data and errors are reduced with simulator
guidance. Complexity is minimized by splitting the surrogate model, while batch nor-
malization (BN) layers reduce overfitting and enhance generalization.

PDE on a closed domain with Dirichlet boundary conditions u = 0 for velocity, and
∂p
∂x = 0 Neumann boundaries for pressure [9].

Loss = α1×LossMSE(Velocity)+α2×LossMSE(Pressure)+α3×LossPhysics (2)

where, α1,α2 are set to 1 to account for all potential mismatched data, and α3 is set to
0.2 to ensure that the LossPhysics corresponds to velocity and pressure losses.

4 Training

Flow trajectories at varying distances (65,195,300) were used, with 5000 timesteps
taken from each to analyze vorticity, as larger distances lead to lower vorticities. Loss
peaks were observed at the start of each epoch due to the resetting of velocity and
pressure 1. The training spans 150 epochs, with the loss plotted every 200 steps (25
steps per epoch). We plotted the loss for the first five epochs to emphasize the impact
of simulation support 1.

This approach works well for fixed cylinder distances, but varying distances in mul-
tiple trajectories pose challenges due to unique vorticity formations. To create a sur-
rogate model that handles these variations, we must minimize false dependencies, like
those introduced by sequential passing of trajectories during training. Currently, our
model operates as a centralized unit generating different flows, which can be a single
point of failure (SPOF), limiting scalability and complicating maintenance.

We addressed these issues by shifting from centralization to decentralization, as
complex systems can exhibit varying behavior based on the system state (e.g., cylinder
position). Capturing diverse behavior across a large state space is challenging for a
single model, so specialized local models help break down the problem. The decentral-
ized model functions as a Mixture of Experts (MoE), which is a model that combines
multiple specialized sub-models and selects the most relevant ones for a task [10]. The



distance determines which model is selected, as shown in Fig. 2, ensuring that only a
relevant part of the system is engaged, unlike a centralized surrogate model.

Fig. 2: In the Mixture of Experts (MoE) model, only the local model corresponding to
the given distance will be activated. If there is no direct match, the closest models will
be enabled, and the one with the highest performance will be selected as shown later in
the Result section 5

5 Results

We used the trained ML models with in-context setup and generate 1000 frames for
every fluid trajectory to check different vorticity formations without involving the sim-
ulator. Our objectives are time efficiency and ensuring high accuracy. As been shown
in fig 3 and table 2, both centralized & MoE surrogate models generate flows in short
time but they differ in accuracy. The performance of the centralized model is biased
towards generating a specific fluid flow and its accuracy decreases as distances vary.
This can be attributed to the effects of closed loop inputs and the false dependencies
created between the fluids. While MoE model can avoid these shortcomings.

Table 1: Time & Performance for generating fluid dynamics

Type Distance Time consumption ↓ MSE Error ↓
CFD-Simulator 65 01:06:07 0
Centralized ML model 65 00:02:32 0.196
MoE Model 65 00:02:21 0.052
CFD-Simulator 195 01:10:17 0
Centralized ML model 195 00:02:52 0.136
MoE Model 195 00:02:21 0.061
CFD-Simulator 300 01:04:47 0
Centralized ML model 300 00:02:30 0.098
MoE Model 300 00:02:16 0.057

For MoE model, the ideal situation is to create a local model for every possible
distance between the cylinders, then predict the fluid for infinite time. Nevertheless, it is
interesting to evaluate the accuracy of fluid predictions from non-existent local models.



Fig. 3: Testing CFD-simulator and two surrogate models on three different flows.
Where the colors refer to the mirrored response of generated fluid along the Y axis
(negative & positive)

Therefore, we trained both a centralized model & a MoE model over three distances
(20,25,30), then we generated from them every possible fluid within the distance range
[20..30].

Fig. 4: Comparison of fluid predictions within the distance range [20..30].

As we can see from fig 4, the overall performance of the MoE model outperforms
the centralized model. The table 2 provides more details about the performance of the
MoE model. It shows the suitable local model to employ based on specific ranges.

We notice that the accuracy decreases as we move away from the trained local mod-
els and when we add more to the system, we maintain higher accuracy.



Table 2: Approximate MoE model performance across varying distances.

Use local model of distance 20 Range Avg loss per frame ↓
MoE(20,25,30) distance [20..21.5] ≤ 0.07
MoE(20,30) distance [20..25] ≤ 0.075
Use local model of distance 25 Range Avg loss per frame ↓
MoE(20,25,30) distance [21.5..27] ≤ 0.07
Use local model of distance 30 Range Avg loss per frame ↓
MoE(20,25,30) distance [27..30] ≤ 0.065
MoE(20,30) distance [25..30] ≤ 0.075

6 Conclusion

In this paper, we introduced surrogate models for fluid dynamics with different archi-
tectures. We demonstrated how utilizing simulation support and splitting the surrogate
model into two sub-models can help reduce complexity. Both the centralized and de-
centralized (MoE) models generated flows and simulated fluids in a short time. The
MoE model showed greater potential to maintain accuracy and handle data complexity.
Future work may involve a dynamic function for MoE in environments with moving
obstacles and improving scalability and real-time adaptation.
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