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Abstract. We propose a motif-augmented approach to classical mu-
sic synthesis using LSTM-based recurrent neural networks trained on J.
S. Bach violin compositions. By combining motif augmentation with
temperature-based sampling, we improve the entropy alignment between
generated sequences and ground-truth data. Our experiments show that
motif augmentation significantly reduces entropy deviation and enhances
sequence coherence, as confirmed by statistical analysis. This method ad-
vances generative music modeling, offering potential applications in music
composition and sequence prediction tasks.

1 Introduction and research outline

Since the dawn of mankind, we have taken inspiration from nature and adopted
and made use of what nature had to offer us. Almost, if not all, of our discoveries
are mere efforts to understand the inner workings of our surroundings. Music is
by no means an exception, having its origin in the way animals communicate,
be it with their offspring, with each other, or as a way to impress a potential
partner.

In the contents of this paper we wish to explore the feasibility of treating
musical compositions as a form of natural language expression. It serves as a
direct continuation of our research in this field [1] and focuses on the possibility
of training an LSTM-type recurrent neural network on a composition data set
by J. S. Bach and then improving the quality of the predictions by introducing a
technique which we have called motif sampling. Repetition and subtle alteration
are key factors in writing a musical piece. By incorporating these so-called
motifs (small sequences of notes with a high occurrence count in the composer’s
musical corpus), we successfully keep in line with the composer’s original work.
The quality measure that we will employ during our experiments is the entropy
of the sequence of notes that make up the musical composition.

Judging from a sample musical sheet, the bare minimum necessary for map-
ping a musical composition to natural language is that a musical unit must be
described by 2 attributes: unit duration (whole, half, quarter and subdivisions
at least up to a sixteenth of a note) and unit position on the musical sheet (also
known as pitch, with support for flat or sharp note alterations). Thankfully,
there exist well-established open source libraries for extracting this information
from MIDI files (https://pypi.org/project/music21/), which the authors
have used extensively in their research (https://github.com/Zerseu/bach21).



2 State of the art in literature

In contemporary music synthesis, deep learning architectures have advanced the
integration of musical motifs, recurring thematic elements that provide coherence
and identity to compositions. These developments focus on effectively represent-
ing, generating, and manipulating motifs to enhance the structural and aesthetic
quality of synthesized music.

A significant challenge in computational music is to capture the implicit
relationships between the motifs and their variations. Traditional methods of-
ten struggle with the diversity and subtlety of motif transformations. To ad-
dress this, researchers have employed representation learning techniques, such as
Siamese networks combined with regularization-based methods such as Variance-
Invariance-Covariance Regularization (VICReg). This approach enables models
to learn nuanced motif representations, facilitating tasks such as motif retrieval
and providing a foundation for motif-based music generation [2].

Deep learning models have been developed to generate music with long-
term coherent structures focusing on hierarchical representations. For instance,
frameworks like MusicFrameworks decompose music generation into multiple
stages, including high-level structural planning and detailed content creation.
This method allows for the generation of melodies guided by motifs, rhythmic
patterns, and harmonic progressions, resulting in compositions that exhibit both
local and global coherence [3].

An emerging trend involves breaking down the music generation process into
subtasks such as extraction, variation, and the development of the motif. This
decomposition enables models to handle complex musical structures more ef-
fectively. By integrating musical knowledge and neurosymbolic methods, these
approaches facilitate the generation of music that reflects human-like thematic
development and structural integrity [4].

Given the repetitive nature of motifs, some models utilize discrete neural
representations to generate musical loops. By learning discrete latent codes,
these models can produce loops that capture the essence of motifs, allowing the
creation of music with consistent thematic elements. This technique improves
both the fidelity and diversity of the music generated, particularly in genres that
rely heavily on repetitive structures [5].

In summary, the current state of the art in applying musical motifs to aug-
ment music synthesis using deep learning architectures involves sophisticated
representation learning, hierarchical modeling, subtask decomposition, and the
use of discrete neural representations. These approaches collectively contribute
to the generation of music that exhibits coherent and engaging thematic devel-
opment.

3 Experimental setup and numerical results

The entropy of a signal consisting of a sequence of numbers measures the amount
of uncertainty or randomness present in that sequence. In information theory,



entropy quantifies the average amount of information produced by a stochastic
data source [6, 7]. For a discrete signal, the entropy H(X) is defined using the
probabilities of occurrence of each possible value in the signal sequence. If X is
a random variable representing the possible values of the signal and p(xi) is the
probability of the value xi occurring, the entropy is given by the following:

H(X) = −
∑
i

p(xi) log2 p(xi) (1)

Thus, a high entropy indicates high randomness and less predictable signal,
whereas a low entropy suggests low randomness and greater predictability of the
signal [8]. The entropy of a sequence of musical pitches can be a compelling
indicator of the qualitative characteristics of a composition for several reasons
[9, 10].

Our experiment investigates the impact of motif augmentation combined
with Andrej Karpathy’s temperature sampling mechanism [11, 12] on the en-
tropy of sequences generated by an LSTM architecture (Fig. 1 and Alg. 1).
The temperature parameter is applied to the output probabilities of the model
before sampling the next token. A higher temperature increases the likelihood
of picking less probable and more surprising tokens, while a lower temperature
favors the most likely tokens and thus more predictable output. The goal is to
determine whether motif augmentation improves the alignment of the generated
sequence entropy with the theoretically expected entropy, derived from ground
truth data (Fig. 2).

The data set comprises note pitch sequences extracted from MIDI [13] files
from J. S. Bach compositions, specifically focusing on the violin parts. Using the
music21 library, musical units were reduced to symbolic representations of pitch,
discarding attributes such as note duration and dynamics. This preprocessing
produces a sequence of standard pitch notations (that is, ”C5” for the C note in
the fifth octave), preserving the temporal order and structural patterns inherent
to Bach’s work. For training, an LSTM-based recurrent neural network was
used with sequences of 16 consecutive pitches as input (number of steps = 16).
The model, with a hidden layer of 256 units, was optimized using mini-batches
of size 8 and trained over 50 epochs. Using this data set, the LSTM is trained
to predict the next pitch in a sequence, effectively learning the compositional
rules embedded in Bach’s music. The motifs themselves were precomputed by
querying the entire corpus with all possible subsequences of pitches of lengths 4
to 8 (using regular expressions for performance considerations). A subsequence
is considered a motif if it appears more than once.

Fig. 1: Architecture of the recurrent LSTM model under scrutiny.



Algorithm 1 Temperature sampling ([11]) and motif augmentation pseudo-code
for note sequence prediction. Based on our Python implementation, using Torch
as back-end. The motif dictionary can be precomputed once for the composer’s
entire corpus and serialized for later use.

Input:
pred ▷ Prediction tensor from the model
temp ▷ Temperature for scaling logits
model ▷ Trained sequence generation model
seq ▷ Input sequence (list of token indices)
motifs ▷ Dictionary of motifs for augmentation
motif threshold ▷ Threshold for motif augmentation
motif augmentation ▷ Boolean flag for augmentation

function TempSample(pred, temp)
pred← detach(pred) ▷ Detach tensor from computation graph
pred← exp(pred/temp) ▷ Scale logits by temperature and exponentiate
pred← pred/sum(pred) ▷ Normalize to obtain probabilities
prob← random multinomial sample from pred
return (max(pred), argmax(prob)) ▷ Return max probability and its index

end function

function TempPredict(model, seq, temp)
input← reshape(seq as (1,−1)) ▷ Prepare input for model
pred← model(input) ▷ Forward pass through the model
return TempSample(pred, temp)

end function

function MotifPredict(motifs, model, seq, temp)
(prob max, prob argmax)← TempPredict(model, seq, temp)

if prob max > motif threshold or ¬motif augmentation then
return (prob max, prob argmax)

end if

for all motif ∈ keys(motifs) do
motif ← map direct(motif) ▷ Map motif words to indices
length← min(len(seq), len(motif)− 1)
if last length tokens of seq = last length tokens of motif then

return (1.0, last token of motif)
end if

end for

return (0.0, prob argmax)
end function

Without motif augmentation, the average difference between the generated
sequence entropy and the expected entropy is larger than that for sequences
generated with motif augmentation. With motif augmentation, the average dif-
ference is consistently smaller, indicating a closer alignment to the expected
entropy (Fig. 3). A paired t-test comparing the average entropy values for se-
quences with and without motif augmentation yielded a statistically significant
p-value (below the conventional threshold of 0.05). This demonstrates that the
difference in entropy alignment between the two methods is not due to random
variation but is likely attributable to the use of motif augmentation. Across the
10 trials, motif-augmented sequences exhibited smaller variations in entropy,
suggesting greater stability and robustness in generating sequences closer to the
expected entropy. Although not explicitly detailed in this summary, the effect



Fig. 2: Plot of linearly interpolated entropy behavior for all considered J. S. Bach
compositions (a total of 75 contiguous segments of notes), primary instrument -
violin (chosen due to its prevalence over other instruments and it being a favorite
of the composer). The expected entropy for a synthetic composition of length
1000 evaluates to 2.421 (vertical dashed line).

of different motif thresholds and sampling temperatures appears consistent with
the hypothesis: the introduction of motif augmentation provides a corrective
mechanism for entropy alignment when the temperature-based method alone
struggles to do so.

4 Conclusions and future research directions

The results suggest that motif augmentation, when combined with the tem-
perature sampling mechanism, improves the fidelity of the LSTM-generated se-
quences to the expected entropy. This improvement is likely due to the addi-
tional information provided by the motifs, which act as structured guidance in
cases where sampling probabilities deviate from the optimal threshold. These
findings highlight the utility of motif-driven enhancements in generative models,
particularly in domains where alignment of entropy with ground truth is critical,
such as in natural language processing, bioinformatics, and sequence modeling
tasks. The statistical significance of the results supports the claim that motif
augmentation is a robust technique for reducing the entropy deviation, making
it a valuable addition to sequence generation methodologies.

In terms of future research, we will focus on evaluating the interplay between
sampling temperature and motif threshold in finer detail to understand their
synergistic effects. Furthermore, we wish to perform some type of task-specific
validation by testing the framework in real-world sequence prediction tasks to
quantify improvements in task-specific metrics. A straightforward quantitative
measure to evaluate the quality of a musical pitch sequence could be the dis-



Fig. 3: Effect of using two different motif thresholds (0.10 and 0.25) on the
entropy of synthetic sequences without (dark gray) and with (light gray) motif
augmentation, as sampling temperature increases from 1 to 10. The horizontal
dashed line is the expected entropy of 2.421.

sonance ratio, defined as the fraction of intervals in the sequence that are con-
sidered dissonant (e.g., minor second, major seventh) versus consonant (e.g.,
perfect fifth, major third).
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