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Abstract.

Autism Spectrum Disorder (ASD) is a neurodevelopmental disorder char-
acterized by symptoms that affect social interaction, communication, and
behavior, the diagnosis being complicated by significant individual vari-
ability and the absence of definitive biomarkers. Current artificial intel-
ligence methods have improved diagnostic accuracy, but their reliance on
subjective assessments or single-modal data, coupled with their “black-
box” nature, limits consistency and clinical applicability. Addressing cur-
rent limitations, this paper introduces a multimodal ASD detection frame-
work using deep neural networks (DNN) with explainable AI (xAI) to
enhance model transparency. Our model achieves a mean 5-fold cross-
validation accuracy of 98.64% (± 0.86%), surpassing existing methods and
demonstrating potential for clinical dependability of ASD diagnoses. The
source code is available at : Multimodal-Explainable-Diagnosis-of-ASD.git

1 Introduction

Autism Spectrum Disorder encompasses a wide range of related conditions, in-
cluding unique symptoms and traits [1]. Rather than a singular disorder, it is a
syndrome with distinct subgroups, leading to varied presentations across individ-
uals [2]. The etiology of ASD is multifaceted, involving genetic and neurological
factors [3].

Over recent years, advanced neuroimaging techniques, notably functional
magnetic resonance imaging (fMRI) [4, 5] and magnetoencephalography (MEG)
[6], have been extensively employed to investigate the structural and functional
brain characteristics associated with neurodevelopmental disorders. Studies
leveraging fMRI have demonstrated that individuals with ASD often exhibit
atypical neural oscillations and disrupted functional connectivity throughout
various stages of development [4, 5, 7]. To capture these distinctions, researchers
have extracted numerous fMRI-based metrics, such as connectivity patterns,
neural activation markers, and nonlinear dynamic indicators, providing quanti-
tative insights into the unique neural profiles of children with ASD [1, 8].

Despite the utility of fMRI, recent research highlights that relying solely on
neural data may be insufficient to capture the complexity of ASD, which af-
fects individuals on multiple levels, from cellular to behavioral[3]. Phenotypic
patterns, specifically cognitive indices like Full-Scale IQ (FIQ), Performance IQ
(PIQ), and Verbal IQ (VIQ), offer additional non-invasive means of understand-
ing ASD’s impact without intrusive methods that may alter the observed be-
haviors or introduce biases.
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However, to date, these data modalities have primarily been applied indepen-
dently in ASD studies to identify biomarkers and build diagnostic models using
advanced ML techniques [1]. Most of studies focus on single-modality data anal-
ysis, which may not be sufficient given ASD heterogeneity and its range of ab-
normal manifestations levels [8]. The multimodal diagnostic framework outlined
in this work integrates fMRI and phenotypic data to address this constraint.

To increase clinicians confidence in the outcomes of AI-based ASD diagnos-
tic systems, this study emphasizes model interpretability [9, 10]. Specifically,
we utilize SHapley Additive exPlanations (SHAP) [11], a robust game-theoretic
approach to explainability, to provide insights into the model decision-making
process. To our knowledge, this is the first work to integrate internal neurophys-
iological data with external non-invasive phenotypic data for explainable ASD
detection. Our key contributions are as follows :

• Exploration of non-invasive modalities, integrating neurophysiologi-
cal imaging data with cognitive assessments for explainable ASD detection.

• Development of a multimodal method combining fMRI and pheno-
typic data using feature selection and a deep neural network.

• An interpretable framework utilizing SHAP values to reveal significant
brain connectivity patterns related to ASD diagnosis.

2 Methodology

The proposed multimodal identification framework for ASD is illustrated in in
Figure 1, where fMRI and phenotypic data are concatenated as one input vector.
It mainly consists of three sequential steps : data acquisition, feature extraction
and selection, and multimodal combination. The details of each part are de-
scribed in the following subsections.

2.1 Data acquisition and preprocessing

We utilized the Autism Brain Imaging Data Exchange (ABIDE I), which ag-
gregates fMRI imaging and phenotypic data from multiple research sites. The
dataset includes 1,112 subjects (539 ASD, 573 controls), aged 7 to 64 years.

2.1.1 Phenotypic Data processing

To ensure dataset integrity, we excluded records with corrupted or missing fMRI
scans. Given that traditional imputation methods may introduce biases and
compromise the validity of analyses for biological data [12], we framed the miss-
ing data challenge as an optimization problem. The goal was to maximize the
feature-to-example ratio while minimizing the missing-example-to-feature one.
The process retained 5 features, summarized in Table 1.

2.1.2 fMRI Data preparation

We utilized the BASC122 brain atlas1, which defines 122 distinct networks, to
delineate specific regions of interest (ROIs) from the imaging data. Functional

1A brain atlas is a detailed map that categorizes different regions and structures of the
brain, often used as a reference in neuroscience for studying brain anatomy and function.
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Fig. 1: Proposed multimodal identification framework of ASD diagnosis.

Table 1: Retained phenotypic features.

Feature Description Type
Age Age at the time of the scan Numeric
Sex Biological sex Categorical
FIQ Full-Scale Intelligence Quotient Numeric
VIQ Verbal Intelligence Quotient Numeric
PIQ Performance Intelligence Quotient Numeric

connectomes2 were constructed using the tangent embedding of the Ledoit-Wolf
regularized covariance estimator. The 4D fMRI data were converted into 2D
time-series representations by applying 3D masks at each time point.

From this time-series data, a symmetric tangent connectivity matrix was
generated and simplified by retaining only the lower triangular values, resulting
in a 1D feature vector of size 7,381. Each element represents the interaction be-
tween a pair of ROIs. Due to high dimensionality, Recursive Feature Elimination
(RFE) was applied to select the 500 most essential fMRI features. These were
combined with the 5 phenotypic features for model input, totaling 505 features.

2Functional connectomes are representations of the functional connections in the brain,
illustrating how different regions interact with one another during rest or task performance.



2.1.3 Deep Neural Network Model

Our DNN architecture features two hidden layers with ReLU activation functions
and dropout to prevent overfitting [13]. The model was trained using standard
feature scaling, L2 regularization, and a sigmoid function in the output layer.
Hyperparameters were fine-tuned using stratified 5-fold cross-validation. The
optimal configuration included 96 units, L2 regularization of 0.002, a dropout
rate of 0.3, and a learning rate of 0.003.

3 Experiments and Results

To assess the effectiveness of our proposed multimodal framework, we bench-
marked its performance against state-of-the-art unimodal methods. The follow-
ing subsections present the results of our performance evaluation and provide an
interpretation of the model’s outputs using explainable AI techniques.

3.1 Model Performance Evaluation

The multimodal approach provides a robust and highly accurate model, effec-
tively integrating diverse features to enhance performance stability. The model
achieves a mean accuracy of 98.64%, with a standard deviation of 0.86, indi-
cating consistently high performance across different folds. Both precision and
recall values are near-perfect for ASD and Non-ASD classes, underscoring the
model reliability in distinguishing between the two.

Comparing with previous studies (Table 2), our Multimodal model, leverag-
ing both fMRI and phenotypic data, outperforms existing methods by achieving
an AUC of 1.00, along with 99% accuracy and recall. These results set a new
benchmark in classification performance, and highlights the efficacy of our ap-
proach in capturing complex patterns within ASD data.

Table 2: Research publications on the ABIDE dataset to ASD detection.

Authors Data modality AUC Accuracy Recall
[5] fMRI - 0.95 0.97
[4] fMRI 0.96 0.87 0.87
[7] fMRI 0.91 0.89 0.93
[14] fMRI 0.78 0.75 0.77
[15] fMRI - 0.70 0.74

Our Method fMRI + Phenotypic 1.00 0.99 0.99

3.2 Model Results Interpretation

SHAP values quantify each variable’s contribution to the ML model’s predic-
tions. We illustrate SHAP explanations using two complementary examples
presented in Figures 2 and 3, which pertain to the same two patients (patient
50606 (a), predicted ASD, and 50572 (b), predicted non-ASD).

In Figure 2, blue denotes a contribution toward non-ASD and red toward
ASD. Phenotypic variables emerge as some of the most influential features
for both patients. The remaining fMRI features collectively contribute to the
model’s predictions, though their individual impacts might be minor.



(a)
(b)

Fig. 2: SHAP values for patients with (a) and without ASD (b).

Fig. 3: Inter-regions connectivity for patients with (a) and without ASD (b).

With 5 phenotypic features and 500 fMRI features, our findings suggest that
the phenotypic features act as high-level, summarized indicators of the activa-
tion patterns in the fMRI. We hypothesize that phenotypic data encapsulates
connectivity measurements between ROIs in the fMRI data. Thus, when com-
bined with fMRI data, phenotypic variables offer additional interpretability as
simplified proxies of the broader neural activity.

Figure 3 presents the explanations related to the fMRI data, into a brain
scan representation. The magnitude of each region’s contribution reveals that
some regions exert significantly greater influence, yet there is a clear cohesive-
ness among them: the majority align with the decision. For patient with ASD
(a), pink regions dominate, emphasizing regions associated with a positive ASD
prediction. In non-ASD case (b), blue regions are more prevalent, reflecting
connectivity patterns that actively oppose an ASD classification.

4 Conclusion and Perspectives

This study presents a multimodal diagnostic framework for ASD, achieving
98.64% of accuracy with minimal variability by integrating resting-state fMRI
and phenotypic data through a deep NN. Using explainable AI components, the
framework addresses obstacles in ASD diagnosis, such as individual variability
and the complexity of interpreting high-dimensional data. Our findings show



that phenotypic features complement and summarize the complex patterns in
fMRI data, offering potential pathways to uncover meaningful biological discov-
eries. Future advancements could integrate more data modalities and enhance
real-time application, boosting clinical utility and trust in AI diagnostics.
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