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Abstract. We present a machine learning approach to the challenging
differentiation of hyperkinetic movement disorders, based on acceleromet-
ric sensor data. We address the diagnosis of essential tremor and cortical
myoclonus as a specific example. Generalized Matrix Relevance Learn-
ing Vector Quantization (GMLVQ) systems are applied directly to power
spectra obtained from eight sensors recording upper body movements. We
find excellent validation performance of the classifiers. Moreover, GMLVQ
provides insight into the characteristic patterns of the phenotypes and the
importance of particular frequency ranges in the spectra. We demonstrate
that the explanatory power of the classifier is further enhanced when in-
tegrating information from several tasks per subject.

1 Introduction

Hyperkinetic movement disorders cause involuntary movements that can affect
various parts of the body. As important examples, tremor is characterized by os-
cillatory movements around joints [1], while myoclonus causes sudden shock-like
jerks resulting from muscular contractions [2]. Both conditions predominantly
affect the upper limbs and typically overlay and impede voluntary actions.

Accurate phenotyping is crucial for clinical decision-making and appropriate
treatment. However, movement disorders can pose significant diagnostic chal-
lenges in clinical practice due to the overlap of their symptoms. For instance,
irregular forms of tremor and high-frequency cortical myoclonus can result in
very similar clinical presentations. Hence, differentiating between tremor and
myoclonus remains challenging, while a quick and accurate diagnostic process
would greatly benefit patients. Frequently, surface electromyography (EMG) and
accelerometry (ACC) measurements are applied in clinical practice for difficult-
to-classify cases. Machine learning techniques have been applied in various stud-
ies, often focusing on tremor severity assessment or subtype identification. A
review of machine learning methods in tremor analysis, data modalities, feature
representations, and preprocessing techniques can be found in [3].

To the best of our knowledge, a direct analysis of ACC spectra by machine
learning has not been studied for the discrimination of tremor and myoclonus.



In the work presented here, we apply prototype-based systems in combination
with relevance learning [4]–[7] directly to the power spectra obtained from ac-
celerometry measurements. Preliminary studies have shown that this approach
yields superior performance compared to the use of engineered features derived
from the spectra. Besides excellent performance, the employed method, Gener-
alized Matrix Relevance Learning Vector Quantization (GMLVQ), enables the
meaningful interpretation of prototypes and relevances, giving insight into the
characteristic disease patterns. This explanatory power is enhanced when inte-
grating information of different sensors and tasks per subject in the training.

The medical aspects and implications of these studies have been presented
in greater detail in a recent, specialized publication [8]. In the current paper
we focus on the machine learning analysis, discuss additional experiments, and
extend the investigation of the feature relevances.

2 Setup and Data

Data was acquired in a cross-sectional study as part of the Next Move in Move-
ment Disorders (NEMO) project [9, 10]. Its aim is to develop novel approaches
to the phenotyping of movement disorders to support clinicians.

In this proof of concept study, we considered 19 patients with essential tremor
(ET) and 19 patients with cortical myoclonus (CM). The diagnoses used as target
labels in our analysis were provided by international panels of experts with very
good inter-expert agreements. Accelerometry measurements were performed in
one resting condition, eight postures, and twelve action tasks. In total, eight
sensors were placed bilaterally on the upper arms (UA), forearms (FA), hands
(HA), and index fingers (IF) of the participants. Here, we restrict the discussion
to a representative selection of tasks:
(P) Posture: pronated outstretched arms and relaxed wrists (both sides),
(A) Action: four-finger tapping task (right side, left side inactive),
(R) Rest: arms at rest, in a relaxed position on the subject’s lap (both sides),
(P∗) Postures*: combination of four postures with outstretched arms and varying
hand or wrist positions (see section 4).
For the analysis of the other tasks, see [8].

After standard preprocessing steps (see [8] and references therein) individual
sensor recordings were represented by log-transformed power spectra, with the
considered frequency range of 1-30 Hz being discretized into 99 bins of equal size.
Additional experiments with further normalization, e.g., with respect to the L1-
or L2-norm of the feature vectors, showed little or no effect on the structure
and performance of the classifiers. In some tasks, single measurements had to
be excluded due to technical problems, reducing the availability of samples from
19 to 18 in the ET cohort. For a detailed description of the patient cohorts,
statistical aspects, and details of the data acquisition and processing, see [8].

Note that, for the posture (P) and resting condition (R), the spectra from all
included sensors were averaged, resulting in 99-dim. feature vectors. The action
task (A) involves finger tapping with the right hand only. Here, the spectra were



no. of samples
Task ET CM UA FA HA IF UA, FA, IF

(P) 18 19 .98 (.06) .99 (.04) .95 (.08) .93 (.09) 1.0 (.01)
(A) 19 19 .85 (.14) .89 (.12) .95 (.07) .99 (.03) 1.0 (.02)
(R) 18 19 .57 (.17) .71 (.18) .61 (.20) .54 (.23) .76 (.20)

(P∗) 75 73 .96 (.05) .95 (.06) .97 (.03) .95 (.06) .96 (.05)

Table 1: Average AUROC and standard deviations observed in 20 runs of five-
fold cross-validation using individual sensors (UA: upper arm, FA: forearm, HA:
hand, IF: index finger) and the combination of UA, FA, and IF, see Section 2.

averaged for each arm, and the left and right sides were concatenated, resulting
in 198-dim. feature vectors. We only present results for the combination of UA,
FA, and IF sensors; see [8] for the results of other subsets.

3 Machine learning analysis: GMLVQ

Prototype-based learning systems such as GMLVQ are inherently interpretable
[4]–[7]. A GMLVQ training process optimizes a number of representative pro-
totypes per class, as well as, in this case, one global relevance matrix Λ. The
latter defines a generalized quadratic distance of the form

d(wj ,x) = (x−wj)
⊤Λ(x−wj) (1)

between a prototoype vector wj ∈ R
d and a data point x ∈ R

d. The adaptive,
positive semi-definite relevance matrix is conveniently re-parameterized as Λ =
Ω⊤Ω with the auxiliary Ω ∈ R

d×d. During training, the auxiliary matrix Ω is
adapted.

In the classification problem we consider feature vectors x representing dis-
cretized power spectra as explained in the previous section. Hence, the outcome
of the training is a set of prototypes, which can be interpreted as represen-
tative power spectra and a discriminative distance measure parameterized by
Λ ∈ R

d×d. In the working phase, spectra are assigned to the class represented
by the nearest of the prototypes. Here, we focused on binary classification prob-
lems and used only one prototype per class.

Given a labeled set of feature vectors {xµ}Pµ=1, the prototypes and matrix Ω
are optimized w.r.t. the cost function [6, 7]

E =
∑P

µ=1 φ
[

d(w+,xµ)−d(w−,xµ)
d(w+,xµ)+d(w−,xµ)

]

, with φ(z) = z in this work. (2)

Here, w+ denotes the closest prototype of the same class as x
µ, and w− the

closest prototype representing a different class. In addition, Ω is normalized
after each update as

∑

i,j Ω
2
ij =

∑

i Λii = 1 to improve numerical stability and
achieve comparability of individual matrices.

We employed the python scikit-learn compatible package sklvq [11] with the
following settings: adaptive squared Euclidean distance, identity function as
activation, and waypoint gradient decent (wgd) as solver with averages computed



Fig. 1: Averaged results of 100 training runs, task (P), UA, FA, and IF, based
on frequencies 1-30 Hz (left) and 1-20 Hz (right). The curves represent the
prototypes (blue: ET, yellow: CM), while the bars correspond to the diagonal
elements of Λ in the considered frequency range.

over five updates and a total number of 50 wgd steps. Initial step sizes were set
to 2.0 and 1.0 for prototype and matrix updates, respectively.

All reported results were obtained in twenty randomized repetitions of five-
fold cross-validation, corresponding to 100 training runs per setting. In each run,
training and validation data were z-scored using means and standard deviations
of the training set. Performance was evaluated in terms of the Area under the
ROC (AUROC). In addition, we present relevances and prototypes averaged
over all 100 runs.

4 Results and Discussion

Classification performance: In general, the GMLVQ classifiers achieved very
good to excellent validation performance, see [8] for detailed considerations. Ta-
ble 1 shows the results for the selected example of a posture (P) and an action
task (A) for different sensors and the combination thereof with near perfect dis-
crimination (mean AUROC=1.0, with standard deviations (SD) 0.01 in (P), and
0.02 in (A)). In the resting condition (R), the influence of CM or ET is expected
to be very limited as both disorders generically exacerbate during voluntary ac-
tion. Reassuringly, the attempt to distinguish the disorders in rest essentially
fails and yields only relatively poor accuracies.

As confirmed in [8], performances vary slightly with the tasks and sensors
considered, but the results do not suggest clear preferential setups. Where avail-
able, several body segments should be integrated into the analysis to achieve
a robust, reliable performance. However, the results of our proof of concept
study show that even single sensors and specific pairs of muscles might suffice
to successfully discriminate ET from CM cases.

Prototypes and Relevances: Fig. 1 (left) displays example prototypes and diag-
onal relevances for the classification of samples in task (P), using the averaged
spectra from the UA, FA, and IF sensors. We observe that a few frequency ranges
play an important role. Most prominently, the diagonal relevances display a pro-
nounced peak in the range of ca. 5-7Hz. In this range, the ET prototype also
displays a peak that is absent in the CM prototype. The latter displays a much
broader spread of power, while the peak of the ET prototype is accompanied
by local minima around 2Hz and 9Hz. The high relevances at these frequencies



Fig. 2: Averaged results of 100 training runs, combined tasks (P∗) as described
in Sec. 1, averaged over UA, FA, and IF (left), and sensors presented as separate
samples (right). Details as in Fig. 1.

indicate that the peak structure is an important discriminative property of the
spectra, significantly determining the classification. In the literature, frequencies
between 4 and 8 Hz are reported as typical tremor frequencies for ET [12].

The relevance profile shown in Fig. 1 (left) suggests a moderate yet significant
importance of the high frequency range 25-30 Hz. This appeared rather implau-
sible, an impression which was confirmed when restricting the feature vectors
and prototypes to the range of, say, 1-20 Hz. Then, a similar accumulation of
apparent relevance near 20 Hz was observed, see Fig. 1 (right). In order to test
our hypothesis that the effect is due to the relatively small sample size and the
noise associated with it, we performed modified training processes by consider-
ing spectra from qualitatively similar tasks for each patient. For instance, in
addition to (P) we considered three more tasks involving outstretched arms but
with different static hand or wrist positions. This way, the number of available
spectra increases per patient and we refer to this data set as (P∗). Assuming
equivalent characteristics, we also determined the performance and relevance
profile of the corresponding GMLVQ classifier in twenty random repetitions of
five-fold patient-wise cross validation. Retaining near-perfect performance (AU-
ROC (SD): 0.96 (0.05)), we now observed significantly reduced relevances in the
high-frequency range, see Fig. 2 (left). We further increased the number of avail-
able spectra per patient by presenting sensor pairs as separate samples, yielding
excellent performance (AUROC (SD): 0.97 (0.04)) and an even clearer relevance
profile as shown in Fig. 2 (right). The increased number of samples per patient
also enables us to consider a majority vote across all predictions, accompanied
by a certainty score in terms of the percentage of correctly classified samples for
each patient. Here, the majority vote achieves an accuracy (SD) of 0.95 (0.07)
with 36 patients having a certainty score above 80% and only 2 patients below

Sensor ACC (SD)

UA .93 (.18)
FA .95 (.15)
HA .94 (.15)
IF .91 (.19)

Task ACC (SD)

Supinated arms and hands .89 (.32)
Pronated arms relaxed wrists .93 (.15)
Pronated arms and hands .95 (.18)

Pronated arms extended wrists .91 (.25)

Table 2: Average accuracy and SD per sensor (left) and task (right) observed in
20 runs of five-fold cross-validation presenting power spectra of tasks (P∗) and
sensors (UA, FA, HA, IF) as individual samples.



this threshold. Additionally, it provides insight into the prediction potential of
tasks and sensor placements, represented by task-wise or sensor-wise accuracy,
which is crucial for selecting suitable setups in clinical applications; see Table 2.

5 Summary and Outlook

In summary, our proof of concept study shows that a reliable discrimination
of ET and CM should be possible on the basis of power spectra derived from
accelerometric measurements. The classification accuracy appeared to be robust
against the specific choice of postures and dynamic tasks. Similar performances
were also observed for the use of various sensor locations or combinations thereof.
The interpretation of GMLVQ feature relevances shows that the shape of the
spectra relative to the typical tremor fequencies bears great importance.

The relatively small number of subjects clearly constitutes a limitation of the
study. Future investigations would benefit from larger, potentially prospective,
patient cohorts. Another important goal is the inclusion of additional hyper-
kinetic movement disorders, such as dystonia and functional disorders. It will
require extensions of the model framework to different setups and modalities.
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