
Compression-based kNN for Class
Incremental Continual Learning

Valerie Vaquet, Jonas Vaquet, Fabian Hinder, and Barbara Hammer ∗

Machine Learning Group
Bielefeld University, Bielefeld - Germany

Abstract. Catastrophic forgetting is a key challenge in continual learn-
ing. In the adjoining field of stream machine learning, few methods target
the related problem of re-occurring drift by avoiding forgetting old data. In
this work, we investigate whether we can transfer such strategies from the
stream machine learning to the continual learning setup. Based on our
consideration, we propose a simple yet efficient compression-based kNN
scheme and evaluate it experimentally.

1 Introduction

Most work on machine learning algorithms considers the batch setup where the
data is generated by a static underlying data distribution making all information
available at training time. This assumption does not hold in many real-world
scenarios, like in natural and industrial processes where we observe data over
time and have to account for different types of non-stationarities [1, 2]. Work
in this area can be categorized in the field of stream machine learning [1] and
continual learning [3].

The goal of stream machine learning (SML) is to keep an accurate model
representing the current data distribution well. Usually, a stream of instances
arriving one by one is considered whereby the data-generating distribution might
change over time – a phenomenon commonly referred to as concept drift [1] or
drift for shorthand. Drift poses considerable challenges when keeping a model
that approximates the most recent concept well. Thus, in this field, simple
base classifiers or ensembles thereof constitute common model choices as they
can be flexibly adapted requiring only little data [1, 2]. There also exist a few
methodologies that are not only flexibly adaptable but equipped to handle re-
occurring drift, i.e. the re-occurrence of previously seen patterns [1].

In contrast, continual learning (CL) leverages deep neural networks. The
goal is to train a model that discriminates all data seen so far. While there are
different CL setups, generally one considers data arriving as a stream of batches
where different batches contain distinct tasks, e.g. data from different classes.
One major challenge of CL is catastrophic forgetting where information learned
on earlier batches is eroded in the training process of the more recent ones [3, 4].
A considerable body of work investigates how to mitigate catastrophic forgetting,
for instance by using replay strategies [4].

In this work, we will investigate another strategy: We explore whether and
how we can transfer strategies avoiding forgetting in SML to the CL setup. More

∗Funding in the scope of the BMBF project KI Akademie OWL under grant agreement
No 01IS24057A and the MKW NRW project SAIL under grant agreement No NW21-059A is
gratefully acknowledged.



precisely, we focus on the Self-Adjusting Memory kNN (SAM-kNN) model [5]
which is particularly suitable for re-occurring drift due to its dedicated memory
storing old concepts. A first challenge in this investigation is the inability of SML
algorithms to handle high-dimensional data such as images adequately. We can
rely on a previously proposed pipeline combining deep foundation models with
SML algorithms that enables SML models to process images effectively [6].

This paper is structured as follows. After summarizing the target setup of CL
and recapping the SAM-kNN model in Section 2, we examine which characteris-
tics prevent us from using SAM-kNN in the CL setup1 (Sections 3 and 4). Based
on our insights we propose a novel compression-based kNN for CL (Section 5)
and conclude this work (Section 6).

2 Foundations – Continual Learning and Stream Learning

CL considers data arriving as N consecutive batches Dt. In class incremental
CL each batch represents a task t, i.e. a subset of classes. The goal is to learn
from the batches and retain all the acquired knowledge. Returning to previously
seen batches is not possible. A key challenge is so-called catastrophic forgetting:
classes learned on earlier batches are compromised during the training process on
the more recent batches [3]. Usually, in CL this challenge is tackled by applying
strategies like replay, etc. [4]. CL algorithms are evaluated by considering the
accuracies al,j of the model being evaluated on the j-th task after being trained
with the batches of tasks 1, . . . , l (j ≤ l). These scores can be summarized to the

average accuracy AAl =
1
l

∑l
i=1 al,i. We refer to AAEnd as the mean accuracy

after training on all batches (l = N). Besides, there are scores measuring the
forgetting, e.g. the maximal accuracy differences fj,l = max{ai,j−al,j | i ≤ l} [3].
We denote the averaged forgetting after training on all batches as AFEnd =
1
N

∑N
i=1 fN,i.

As previously discussed, forgetting earlier concepts is also a challenge for
stream learning algorithms that face re-occurring drift [1]. To avoid this behavior
[5] proposed the SAM-kNNmodel. Building upon a simple and quickly adaptable
kNN classifier paired with an intelligent memory construction SAM-kNN is well
equipped to model the current concept while keeping information on earlier
concepts: SAM-kNN contains a size adaptable sliding window representing the
most recent samples called short term memory (STM). Whenever predictive
power declines, for instance, due to drift, the window is resized such that it
only represents the current concept. Older samples are not deleted but stored
in the long term memory (LTM) which contains a compressed representation of
all data samples not directly contradicting the state of the STM. The LTM is
kept in a size limit by applying k-means clustering to its samples whenever the
designated storage is exceeded. At prediction time either the kNN prediction
of the STM, the LTM, or their combination (CM) is selected based on previous
performance of these three options. In experiments this model showed good
performance to heterogeneous drifts and in particular to reoccurring patterns
[5]. In this contribution, we investigate how we can leverage the strengths of
this model in the CL setup.

1Code is available at https://github.com/jvaquet/Compression-Based-kNN.

https://github.com/jvaquet/Compression-Based-kNN


3 SAM-kNN in the Continual Learning Setup

Leveraging the pipeline for applying SML methods to streams consisting of image
data [6], we raise

Hypothesis I: Combining deep embeddings with SAM-kNN can be used in the
continual learning setup while avoiding catastrophic forgetting.

To test this, we evaluate the performance of SAM-kNN in the setting of class
incremental learning. We replicate the experimental setup described in [4]. In
this work, we focus on the Split Cifar-100 dataset consisting of 20 tasks with
disjoint classes. Each task contains 2,500 images of size 3× 32× 32 representing
5 classes. 500 images per task are available for evaluation in a separate test
set. We follow the described setup and repeat the experiment 15 times with
randomly selected class composition in each run. We use the following pipeline:

Pipeline First, we embed the images using a ResNet50 model which has been
pre-trained on ImageNet to obtain a 2,048-dimensional representation. As this
is quite high dimensional for a kNN-based model or other simple base learners
used for SML algorithms, we perform a PCA and obtain 50-dimensional data
points. The PCA has been pre-trained on the tiny ImageNet training set. This
preproccessing yields a low-dimensional representation which can be fed to SAM-
kNN. To stick to the one-by-one stream processing, we shuffle each task batch
and concatenate all of them into one data stream. Evaluation is performed on
the test sets provided by [4].

SAM-kNN Since in this case, we aim to obtain a SAM-kNN model which can
accurately predict the data from all tasks presented during the training, we skip
the cleaning process in which information contradicting the STM is deleted from
the LTM.

In our experiments, we obtain an AAEnd of 0.065 ± 0.088 and an AFEnd of
0.5155 ± 0.01605. Thus, when applying SAM-kNN with the deep embedding
pipeline we observe severe catastrophic forgetting. This is likely due to using
the vanilla compression process: As for each class the number of representatives
is halved whenever the LTM exceeds its size we have an exponential decay in
the class representation, hurting the performance on earlier tasks.

SAM-kNN (balanced) Thus, in a second experiment, we enforce a balanced
LTM by always distributing the available storage capacity equally between all
classes seen so far in training.

We observe a AAEnd of 0.107±0.0052 and an AFEnd of 0.309±0.0056. While
this constitutes a considerable improvement and is comparable to the weaker-
performing models with a very limited buffer evaluated in [4], the model is still
performing poorly. Our observations might be caused by (i) a poor embedding
quality, (ii) issues of the kNN-based model in discriminating a large number
of classes, or (iii) that SAM-kNN is not suitable for the CL setup. We can
exclude options (i) and (ii) by evaluating how well a batch kNN performs on the
embedded data representation. Running this experiment we obtain an AAEnd

of 0.251±0.000 which is a reasonable score compared to the well-performing CL
models considered in [4]. This leaves us with option (iii) which is additionally the
only of the aspects that might explain the forgetting effect. We will investigate
this in detail in the next section.



4 The Role of the Task Size

As we already described CL and SML differ in their main objectives but also in
the considered setups: instead of considering a potentially drifting data stream
in CL different tasks are presented as batches over time. In this section, we eval-
uate whether this is causing the observed performance decline and the effect of
catastrophic forgetting when using SAM-kNN. More precisely, we test whether:

Hypothesis II: Large task sizes cause catastrophic forgetting.

We aim to evaluate the effect of task sizes by interpolating between the
setups. A stream of batches used in CL can be adapted to a data stream by
decreasing the task batches to very small sizes. To still provide the same amount
of data, the tasks will repeat over time. In our experimental evaluation, we
consider the range from a task size of 5, i.e. each class being present once, to the
considered CL task size of 2,500. To avoid sampling effects we enforce that the
single task batches contain the same number of samples per class. The results of
our experiments are visualized in Fig. 1. As one can see, for both SAM-kNN and
SAM-kNN (balanced) the task-wise end accuracies decrease while the forgetting
scores increases with increasing task size, thereby confirming Hypothesis II. We
observe a considerably better performance for those tasks that were considered
late in training, underscoring the effect of catastrophic forgetting. While this
effect is not as pronounced for SAM-kNN (balanced) the obtained accuracies
are still not optimal. We suppose that this effect is again connected to the

(a) Acc. SAM-kNN (b) Acc. SAM-kNN (balanced)

(c) Forgetting SAM-kNN (d) Forgetting SAM-kNN (balanced)

Fig. 1: Results of experiments of the vanilla SAM-kNN and the version with balanced
LTM for varying task sizes. Tasks are indicated by colors and are ordered, i.e. task 0
was the first seen in training, task 19 last.



compression step of the LTM. Repeatably performing clustering might result in
unsuitable class representatives as we are increasingly deviating from real class
representatives.

5 Compression-based kNN for Continual Learning

Summarizing the experiments presented in the last section, we hypothesize that

Hypothesis III: Applying clustering repeatably is causing
a weak performance of SAM-kNN in the CL setup.

Testing this hypothesis, we propose a compression-based kNN model that di-
rectly works in the CL setup. Since in task-incremental CL we are presented
with batches of tasks, we can eliminate the SML instance by instance processing
of SAM-kNN. In this setup, we only need the data to be suitably represented in
the LTM and, thus, can discard the STM and the CM. We obtain the following
strategy:

Compression-based kNN For each task, we save a compressed representation
of each class to the LTM. In this step, we again rely on k-means clustering and
select c clusters per class. However, in this case, we only apply the clustering
procedure once for each class instead of repeatably. We stick to the preprocessing
pipeline presented above.

We experimentally evaluate this compression-based kNN methodology in the
CL experimental setup for different choices of c. We compare our method to the
two best-performing methods iCaRL [7] and GDumb [8] in the study [4] (results
are taken from Tab. 7). Both rely on replay to avoid catastrophic forgetting.
Our results are presented in Fig. 2. As one can see, we observe considerably
better results than by applying SAM-kNN to the CL setup. We also outperform
SAM-kNN and SAM-kNN (balanced) on smaller task sizes which confirms our
hypothesis. Besides, our simple strategy performs on par or better compared to
SOTAmethods with a replay buffer of 5,000 images. Furthermore, due to the fact

Fig. 2: Results of the experiments of the compression-based kNN with different com-
pression levels. y-axis AAEnd, x-axis (inverted, such that upper right corner is optimal)
shows the required storage space for the kNN memory/the replay memory.



that our methodology relies on a compressed representation of low-dimensional
data, our method is more storage-efficient than the SOTA replay-based methods
which need to store actual images in their memory buffers.

6 Conclusion

In this work, we found that one cannot directly use SML strategies like the LTM
in SAM-kNN to prevent catastrophic forgetting in CL. In our experiments, we
observed that the large task sizes considered in CL pose issues to SAM-kNN
and that repeatedly applying compression is a problem. Thus, we proposed
a compression-based kNN strategy that is more storage efficient than current
replay-based CL strategies while performing comparable to methods with limited
replay.

This work can be understood as a proof-of-concept showing that relying on
suitable embeddings and compression is an efficient strategy to approach CL.
Future work exploring more advanced compression and classification techniques
is required. Besides, rethinking whether end-to-end deep learning is required in
every CL task might be beneficial: Future work might explore whether using a
similar embedding strategy paired with a shallow neural network architecture as
a classification head that still benefits from replay techniques is advantageous
over classical end-to-end CL.

References

[1] João Gama, Indrė Žliobaitė, Albert Bifet, Mykola Pechenizkiy, and Abdelhamid
Bouchachia. A survey on concept drift adaptation. ACM Computing Surveys, 46(4):44:1–
44:37, March 2014.

[2] Viktor Losing, Barbara Hammer, and Heiko Wersing. Incremental on-line learning: A
review and comparison of state of the art algorithms. Neurocomputing, 275:1261–1274,
January 2018.

[3] Liyuan Wang, Xingxing Zhang, Hang Su, and Jun Zhu. A Comprehensive Survey of
Continual Learning: Theory, Method and Application. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 46(8):5362–5383, August 2024.

[4] Zheda Mai, Ruiwen Li, Jihwan Jeong, David Quispe, Hyunwoo Kim, and Scott Sanner.
Online continual learning in image classification: An empirical survey. Neurocomputing,
469:28–51, January 2022.

[5] Viktor Losing, Barbara Hammer, and Heiko Wersing. KNN Classifier with Self Adjusting
Memory for Heterogeneous Concept Drift. In 2016 IEEE 16th International Conference
on Data Mining (ICDM), pages 291–300, Barcelona, Spain, December 2016. IEEE.

[6] Valerie Vaquet, Fabian Hinder, Jonas Vaquet, Johannes Brinkrolf, and Barbara Hammer.
Online learning on non-stationary data streams for image recognition using deep embed-
dings. In IEEE symposium series on computational intelligence, SSCI 2021, orlando, FL,
USA, december 5-7, 2021, pages 1–7. IEEE, 2021.

[7] Sylvestre-Alvise Rebuffi, Alexander Kolesnikov, Georg Sperl, and Christoph H. Lampert.
iCaRL: Incremental Classifier and Representation Learning. pages 2001–2010, 2017.

[8] Ameya Prabhu, Philip H. S. Torr, and Puneet K. Dokania. GDumb: A Simple Approach
that Questions Our Progress in Continual Learning. In Andrea Vedaldi, Horst Bischof,
Thomas Brox, and Jan-Michael Frahm, editors, Computer Vision – ECCV 2020, volume
12347, pages 524–540. Springer International Publishing, Cham, 2020.


	Introduction
	Foundations – Continual Learning and Stream Learning
	SAM-kNN in the Continual Learning Setup
	The Role of the Task Size
	Compression-based kNN for Continual Learning
	Conclusion

