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Abstract. Hierarchical Decomposition Methods (HDMs) are techniques
that handle multi-class classification problems by breaking them down into
smaller, more manageable binary classification tasks, typically achieving
better accuracy than flat classification approaches. In this work, a new
HDM based on the exploitation of DRASiW “Mental Images” to construct
the optimal tree model is presented. Through experiments performed on
26 standard datasets, we show how this approach improves the system
classification performance with respect to the classical flat classification.

1 Introduction

Improving classification performance remains a central challenge in machine
learning, particularly for complex multi-class problems and/or when there are
class overlaps. A way to address this task is to split the problem into simpler
subproblems, and one approach that allows to do this, extending ML/neural
network models, is that of Hierarchical Decomposition Methods.

HDMs are a category of hierarchical classification techniques that construct
a hierarchy without using a pre-defined structure like a taxonomy. Initially
developed for problems with natural hierarchical relationships, these methods
have shown remarkable utility even in flat classification scenarios showing how
HDMs generally enhance the performance of classification flat approaches [1].

Nested dichotomies are one of the most used HDM that recursively partition
the set of classes into a binary tree structure. Each node in the tree is a binary
classifier trained to distinguish between two groups of classes. Classification
proceeds down the tree, and each node’s decision guide the path until a leaf
node representing the final predicted class [2].

Early approaches of the nested dichotomies used probabilistic methods, ex-
ploiting random decompositions to create hierarchical classifier ensembles [3] and
incorporating class balancing in hierarchy construction [4]. Successively, clus-
tering techniques were introduced to guide the decomposition process. These
approaches focused on splitting distant classes (easy to distinguish) and merging
closer ones (difficult to distinguish) using class distance measures [5] or confusion
matrices [6]. Kernel methods, such as kernel SVMs, were applied to optimize
splits and improve hierarchy quality [7]. Additionally, Error-Correcting Output
Codes were applied to enhance classification robustness through principles of
coding theory [8].

In this work, we propose an HDM that uses nested dichotomies based on
DRASiW “Mental Images” (MIs) evaluation. Like other approaches, the ba-
sic idea consists of dividing classes into two homogeneous groups based on the



principle of separating distant classes and grouping similar ones (balanced clus-
tering). However, unlike traditional methods where distances are defined based
on centroids or confusion matrices, our approach exploits the MIs. During the
training phase, distances are computed on information stored in the MI discrim-
inators and used to select the best balanced split at each level (details provided
in Section 3). For each tree node, a devoted DRASiW model is assigned. To the
best of our knowledge, this is the first time such an approach has been attempted
in this context. The experimental results demonstrated that in most cases, the
proposed approach successfully identifies the optimal tree structure, leading to
better f1-score values.

2 The DRASiW Classifier and Mental Images

DRASiW is an extension of WiSARD (Wilkie, Stonham and Aleksander’s Recog-
nition Device) [9], a Weightless Neural Networks (WNNs) architecture based
on neurons defined through lookup tables (RAM) instead of weighted connec-
tions [10]. DRASiW’s architecture consists of multiple discriminators, each ded-
icated to a specific class or category. Each discriminator processes binary inputs
through RAM-based neurons, where the training function stores the frequency
of the observed patterns during the learning phase. This frequency information
allows the generation of MIs [11].

The MIs are a grayscale pictorial representations of the knowledge acquired
during training. When a discriminator transforms the information into a grayscale
image one can observe that darker pixels indicate features that are more signifi-
cant for class identification. These visual representations effectively capture the
“prototype” of each class (in figure 1 an example is shown), making the decision-
making process more transparent and analyzable. In fact, using such MIs, there
have been improvements in the architecture’s capabilities through the introduc-
tion of the refined Dynamic Adaptive Bleaching (rDAB) procedure, to address
classification ties and unbalanced dataset [12], and common sense rules [13] to
drive the classification process.

3 Decomposition process

The proposed approach is based on the analysis of MIs, generated by DRASiW
discriminators, to guide the construction of a hierarchy of binary classifiers
(nested dichotomies). The method is founded on the principle of maximizing
separation between dissimilar class groups (inter-group distances) while preserv-
ing internal cohesion among similar classes (maximizing intra-group similarity).

The tree construction process follows a top-down recursive approach. For
each level, starting from the root (set of all classes), the algorithm evaluates
possible bipartitions of classes with a specific constraint: given N classes, only
groups of size ⌊N/2⌋ are considered (N/2 and N/2− 1 group sizes for even N).

This constraint serves two purposes: it significantly reduces the number of
possible combinations to evaluate and ensures balanced group sizes through-



Fig. 1: Examples of some Optdigits MI classes

out the hierarchy. For each valid bipartition, for example g1 and g2 and their
respective MI’s (MIg1 , MIg2), a composite score is calculated combining the
inter-group distance using Hamming distance H(MIg1 ,MIg2) and intra-group
similarity using Jaccard similarity calculated as the average of Jaccard similari-
ties within each group 1

2 (J(MIg1) + J(MIg2)). The final Score is given by:

Score =
1

2
(J(MIg1) + J(MIg2)) · (1 +H(MIg1 ,MIg2)). (1)

The maximum the score is selected. The process is recursively applied to the
new subgroups, and recursion stops when single nodes are reached.

As shown in formula 1, to evaluate the quality of divisions, the approach uses
two complementary metrics:

• Hamming Distance (inter-group): it measures the dissimilarity between
groups by calculating the difference between their MIs.

• Jaccard Coefficient (intra-group): it quantifies the similarity within groups
through the average ratio between the intersection and union of MIs. It
is particularly suitable for evaluating the cohesion of discriminators that
share similar patterns (information).

In the example reported in figure 1, one can notice how much the MI of class
“4” (MI4) differs from MI3 and MI8 in terms of Hamming distance, while MI3
and MI8 are quite “similar”.

The choice of these metrics is motivated by their complementarity and natu-
ral applicability to DRASiW’s MI representations. The Hamming distance effec-
tively captures structural differences between representations, while the Jaccard
coefficient provides a measure of pattern overlap.

The Score calculated with equation 1, based on intra-group similarity and
inter-group distance, creates a natural balance between cohesion and separation.
Indeed, higher scores indicate better subdivisions with strong internal similarity
and clear group boundaries, ensuring that the resulting hierarchies group similar
classes while maintaining clear boundaries between distinct class clusters, penal-
izing subdivisions that create groups that are too dispersed or too overlapping.
An example of such an approach is provided in subsection 3.1

3.1 The Shuttle example

The Shuttle dataset is formed by 7 classes, 58000 istances and 9 features. 35
different combinations of 7 classes applying the ⌊N/2⌋ decomposition are cre-
ated. For each combination and for each group of classes, a MI is created by



aggregating the discriminators belonging to the groups. Then, for every couple
of groups, we measure their MI similarity (Jaccard) and their MI distance (Ham-
ming). This exaustive procedure is only applied to all the possible combinations
on the first decomposition level. From the second level onwards, the procedure
is applied only to those branches selected by the previous decomposition level.
For the Shuttle dataset, the best first class decomposition is {0, 5, 6} – {1, 2,
3, 4}, as one can see from its Score reported in table 1. These two groups of
classes are then given as input for the second level decomposition resulting from
one side in {5} – {0, 6} and on the other side in {1, 3} – {2, 4} (see table 2).

The classification process starts with a first system formed by two discrim-
inators D056 and D1234. In the second level, the process continues with other
two systems each one with 2 new discriminators: D5 and D56 on one side and
D13 and D24 on the other side. Eventually, the process ends up in the third
level with three systems still with 2 discriminators each: D0 and D6, D1 and
D3, D2 and D4. Once created the tree system architecture and the classifica-
tion process starts on a given input, the best response between D056 and D1234

decides whether the input has to be given to D5 and D06 or to D13 and D24.
This process is iterated and the classification stops once reached the tree leaves.

1st group 2nd group Score

{0, 5, 6} {1, 2, 3, 4} 1.090 · 1010
{0, 2, 6} {1, 3, 4, 5} 1.044 · 1010
{1, 3, 4} {0, 2, 5, 6} 1.037 · 1010
{0, 2, 5} {1, 3, 4, 6} 1.004 · 1010
{2, 3, 4} {0, 1, 5, 6} 1.002 · 1010
{0, 1, 5} {2, 3, 4, 6} 9.772 · 109
{3, 4, 5} {0, 1, 2, 6} 9.301 · 109
{0, 1, 6} {2, 3, 4, 5} 9.156 · 109
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Table 1: First level decomposition

1st group 2nd group Score

{5} {0, 6} 8.437 · 106
{6} {0, 5} 4.937 · 106
{0} {5, 6} 4.494 · 106

1st group 2nd group Score

{1, 3} {2, 4} 1.193 · 109
{1, 4} {2, 3} 9.611 · 108
{1, 2} {3, 4} 2.021 · 107

Table 2: Second level decomposition

4 Experiments

We carried out the experiments on 26 standard classification datasets (25 of
which are from the KEEL archive1 while the 26th is the Alzheimer’s disease
dataset reported in [14]). We limited the selection of datasets to those with up
to 15 classes and mainly characterized by numerical features.

The aim of the experiments is that of comparing the standard performance
of the rDABr model [12] with those achieved by the same system (from now on
H rDABr) on the 26 datasets but hierarchically decomposed. It is important and
worth noticing, that both systems run with the same parameter configuration.

Taking advantage of the available and already partitioned KEEL datasets,
experimental results were collected running a five-fold cross-validation.

The measures selected to compare the system performance, with and without

1https://sci2s.ugr.es/keel



hierarchical dataset decomposition, are: the f1-score,2 the difference of responses
∆r and theGain. While ∆r = rH−r (respectively the responses of H rDABr and
of rDABr), the Gain is defined as ∆r/∆g, where ∆g is the maximum achievable
increase and it is defined as ∆g = 1 − r. A positive Gain indicates a system
performance improvement.

rDABr H rDABr f1-score

Classes Datasets f1-score f1-score Gain ∆r

3

Balance 0.7100 0.7108 0.0027 0.0008
Contraceptive 0.5229 0.5330 0.0210 0.0100
Hayes 0.8544 0.8765 0.1519 0.0221
Iris 0.9599 0.9665 0.1650 0.0066
Newthyroid 0.9650 0.9720 0.2011 0.0070
Tae 0.6403 0.6522 0.0330 0.0119
Thyroid 0.8779 0.9035 0.2099 0.0256
Wine 0.9837 0.9891 0.3297 0.0054

4
Alzheimer 0.4900 0.5373 0.0926 0.0472
Vehicle 0.7549 0.7513 -0.0145 -0.0035

5

Cleveland 0.3313 0.3924 0.0913 0.0611
Page-block 0.7780 0.7788 0.0038 0.0008
Satimage 0.8874 0.8910 0.0318 0.0036

6
Glass 0.7105 0.7198 0.0323 0.0093
Wine-red 0.3777 0.3876 0.0159 0.0099

7

Segment 0.9739 0.9779 0.1539 0.0040
Shuttle 0.9151 0.9688 0.6326 0.0537
Wine-white 0.4617 0.5060 0.0823 0.0443

8 Ecoli 0.7272 0.7280 0.0028 0.0008

9 Marketing 0.3073 0.3023 -0.0073 -0.0050

10

Optdigits 0.9838 0.9827 -0.0675 -0.0011
Penbased 0.9921 0.9931 0.1344 0.0011
Yeast 0.5858 0.6014 0.0377 0.0156

11
Texture 0.9807 0.9837 0.1512 0.0029
Vowel 0.9899 0.9960 0.5990 0.0060

15 Movement-libras 0.8614 0.8958 0.2480 0.0344

Avg 0.1283 0.0144

Max 0.6326 0.0611

min -0.0675 -0.0050

Table 3: Gain and ∆r of rDABr f1-score vs H rDABr f1-score

5 Results

The improvement in performance obtained by the introduced dataset HDM
based on class grouping and evaluated through the MI comparison, is well
espressed by the results shown in the Gain and ∆r columns reported in ta-
ble 3. Even if the new system H rDABr does not get the best performance

2By dividing the classes into groups, new highly unbalanced datasets are produced, so
f1-score is preferred over accuracy for performance evaluation.



on every dataset, the average Gain is very good (0.1283) and ∆r > 0. The
best performance in terms of Gain are reached on Shuttle (Gain=0.6362 with
∆r = 0.0537) and on Vowel (Gain=0.5990 with ∆r = 0.0060) datasets, while in
terms of ∆r on Cleveland (∆r = 0.0611 with Gain=0.0913). The worst result
(Gain= −0.0675 with ∆r = −0.0011) is reachead on the Optdigits dataset.

6 Conclusion

A new HDM based on MI class evaluation and comparison has been introduced.
This decomposition allows the chosen system (H rDABr) to perform better with
respect to the one running on the standard flat classification (rDABr). Fur-
thermore, we would like to underline that all the knowledge concerning how
to decompose the class dataset is carried out and extracted by exploiting and
comparing the knowledge content of the MI classes, that is already implicitly
included within the system.
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