
CompactifAI: Extreme Compression of Large
Language Models using Quantum-Inspired

Tensor Networks

Andrei Tomut1,2, Saeed S. Jahromi3,1, Abhijoy Sarkar1, Uygar Kurt1, Sukhbinder
Singh4, Faysal Ishtiaq1, César Muñoz1, Prabdeep Singh Bajaj1, Ali Elborady1,

Gianni del Bimbo1, Mehrazin Alizadeh4, David Montero1, Pablo
Mart́ın-Ramiro1, Muhammad Ibrahim1, Oussama Tahiri Alaoui1, John Malcolm4,

Borja Aizpurua1, Samuel Mugel4, and Román Orús1,3,5

1- Multiverse Computing, Parque Cientifico y Tecnológico de Gipuzkoa,
Paseo de Miramón, 170 2 ◦ Planta, 20014 Donostia / San Sebastián, Spain

2- Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC
and The Barcelona Institute of Science and Technology, Campus UAB, 08193

Bellaterra, Catalonia, Spain

3- Donostia International Physics Center, Paseo Manuel de Lardizabal
4, E-20018 San Sebastián, Spain

4- Multiverse Computing, Centre for Social Innovation, 192 Spadina
Avenue Suite 509, Toronto, ON M5T 2C2, Canada

5- Ikerbasque Foundation for Science, Maria Diaz de Haro 3, E-48013 Bilbao, Spain

Abstract. Large Language Models (LLMs) like ChatGPT and LlaMA
offer immense opportunities but face challenges due to their vast size,
leading to high training/inference costs and energy demands. Traditional
compression methods focus on reducing neurons or precision. We introduce
CompactifAI, a novel LLM compression using quantum-inspired Tensor
Networks to compress the model’s correlation space. Testing on LlaMA-2
7B showed a 93% memory and 70% parameter reduction, with minimal
accuracy loss (2-3%) and significant training (50%) and inference (25%)
speedups.

1 Introduction

Large Language Models (LLMs) like OpenAI’s ChatGPT [1], Meta’s LlaMA
[2], and Google’s BERT [3], based on the transformer architecture [4], have
revolutionized artificial intelligence, enabling unprecedented human-machine in-
teractions across sectors and attracting substantial investments.

However, LLMs face significant challenges due to their vast size and enormous
energy consumption for training. Training models like ChatGPT-3 reportedly
cost $100 million in electricity [5], with expenses predicted to double every ten
months. This unsustainable energy demand necessitates greener, more efficient
solutions. Compression techniques like quantization [6], distillation [7], pruning
[8], and low-rank approximations [9] have been proposed but often act as brute-
force methods, making it challenging to control compression errors and leading
to mixed results.

In this paper, we introduce CompactifAI [10], a novel LLM compression
technique based on quantum-inspired Tensor Networks (TNs) [11]. Our method
”tensorizes” the self-attention and multi-layer perceptron (MLP) layers using
specific TNs, truncating model correlations. By controlling the TN bond dimen-
sion, we achieve significant reductions in memory size and the number of param-
eters while maintaining accuracy. This compression reduces energy and memory
requirements, making training, retraining, and inference more efficient. Notably,
tensorization drastically reduces GPU-CPU transfer times in distributed train-
ing, cutting training and inference times by 50% and 25%, respectively. A brief
retraining allows the compressed model’s accuracy to approach that of the orig-
inal uncompressed version.

2 Method

We compress Large Language Models (LLMs) by efficiently decomposing neu-
ral network weight matrices into Tensor Networks (TNs), specifically Matrix
Product Operators (MPOs). While TNs have been applied in deep learning ar-
chitectures before [12, 13, 14], this is, to our knowledge, their first use for LLM
compression. Our approach begins with layer sensitivity profiling to identify
layers suitable for compression. We then replace the trainable weights in these
layers with MPOs characterized by a bond dimension χ.

In the case of the LlaMA-2 chat model, as illustrated in Fig.1.1, we substi-
tute the weight matrices in the Self-Attention (SA) and Multi-Layer Perceptron
(MLP) layers with MPOs. These MPOs are constructed by performing sequen-
tial Singular Value Decompositions (SVDs) on the original weight matrices and
retaining the top χ singular values at each step. This process effectively trun-
cates correlations within each layer, preserving only the most relevant informa-
tion while discarding less significant data.

This method significantly reduces memory requirements, as storing the trun-
cated MPOs-whose memory cost scales polynomially with the number of tensors-
is far more efficient than storing the original weight matrices, whose size scales
exponentially with the system size (i.e., the number of tensors), not with the
matrix dimensions. The bond dimension χ controls the level of compression:
smaller values of χ result in greater compression but may lead to reduced accu-
racy. Additionally, the choice of TN architecture and the number of decomposed
tensors per layer serve as extra hyperparameters for the compressed model.

To maintain high accuracy, we include a rapid retraining phase, termed ”heal-
ing,” after truncating the MPOs. This step is crucial because layer-by-layer trun-
cations might not be globally optimal, as they don’t account for interactions with
other layers. Retraining is more efficient than training the original model due
to the reduced number of parameters, which decreases CPU-GPU transfer times
in distributed training setups. As we demonstrate later, just a few retraining
epochs enable the compressed model’s accuracy to closely approach that of the
original uncompressed version, but at a fraction of the computational cost.

Additionally, we optimize the MPO decomposition by tuning compression

Llama Decoder Block

. . . .

SA MLP

To
ke

ni
ze

d
In

pu
t

To
ke

ni
ze

d
O

ut
pu

t

Embeding
Layer

Head
Layer

LlaMA Decoder Block

SA MLP SA MLP SA MLP

Head
Layer

Embedding
Layer

To
ke

ni
ze

d
O

ut
pu

t

To
ke

ni
ze

d
In

pu
t

SVDReshape
(a)

(b)

1. (a) Diagram of a weight matrix W de-
composed into a MPO with χ bond di-
mension for truncation. (b) Schematic of
LLM tensorization in the LlaMA model.
The Self Attention and MLP layers’
weight matrices are decomposed using
MPOs with bond dimension χ.

A
cc
ur
ac
y	
(%
)	

10

20

30

40

50

60

70

80

90

	

MM
LU

Hel
laSw

ag
Boo

lQ
Triv

iaQ
A

GSM
8K

	

Original
8	Bit
4	Bit
88%	Compressed
93%	Compressed

2. Accuracies of the original and com-
pressed models for various tasks. The
compressed models only deviate by 2%-
3% compared to the original LlaMA-2 7B.

Fig. 1: [Color online] Illustration of the tensor network method (1) and its impact
on model accuracy (2).

parameters for different layers, ensuring that each layer’s compression is adjusted
dynamically to maintain overall model accuracy (leveraging layer profiling tools).
While this work focuses on compressing pre-trained models, training a model
from scratch with MPO-replaced weight matrices could lead to faster training
due to the smaller number of parameters, although it remains to be seen whether
such models would achieve the same accuracy as those obtained via post-training
compression.

3 Benchmark

We evaluated our method by compressing the LlaMA-2 7B model, a large lan-
guage model with 7 billion parameters, pre-trained on over 2 trillion tokens,
offering a context length of 4096, and fine-tuned with more than 1 million hu-
man annotations.

We created several compressed versions of the LlaMA-2 7B model using a
combination of tensor network compression and quantization (see Table 1). The
8-bit and 4-bit quantized models were produced using the bitsandbytes quan-
tization library. The 88% and 93% compressed models (in memory size) were
obtained by applying CompactifAI to the float-16 quantized version of the orig-
inal model. While both tensor network compression and quantization reduce
model size, the tensorized models significantly reduce the number of parame-
ters, allowing for greater size reduction. Unlike quantization, this parameter
reduction is the key feature that enables significant speedups in both training
and inference.

After compression, we retrained (”healed”) the tensorized models to recover

Model Size Parameters Quantization
Original 27.1 GB 7B float-32
8-bit 6.8 GB 7B int-8
4-bit 3.4 GB 7B int-4
88% 4.1 GB 2.1B float-16
93% 2.1 GB 2.1B mixed

Table 1: Details of the models used in the benchmarks. The quantization in the
93% compressed model is a mix of float-16 for the tensorized layers and int-4
quantization for the not-tensorized layers.

any accuracy loss due to parameter reduction. We used generic chat datasets
such as Ultrachat, Alpaca, and OpenHermess for retraining, implemented on a
single AWS EC2 instance with 8 NVIDIA A10g GPUs using distributed training.
Healing was performed for less than one epoch on these datasets. The 93%
compressed model was obtained by further applying 4-bit quantization to the
non-tensorized layers of the 88% compressed and healed model.

We benchmarked all models on tasks related to language understanding
(MMLU), commonsense reasoning (HellaSwag), reading comprehension (BoolQ),
world knowledge (TriviaQA), and math (GSM8K), using the LLM Evaluation

Harness [15].
The compressed models maintained accuracies very close to the original

LlaMA-2 7B model, deviating only by 2-3%, even with 70% fewer parameters
(just 2.1 billion) (see Fig. 1.2 and Table2). This suggests that a substantial por-
tion of the parameters in LLMs are redundant, and that large language models
are heavily overparametrized. Notably, the accuracies of the tensorized models
were achieved after training for only one epoch during healing; further fine-tuning
could yield even better results, sometimes surpassing the original model’s perfor-
mance, as observed in tests with smaller models. Before the healing phase, the
accuracy loss varies depending on the compression level. However, ongoing work
explores methods such as context-aware SVD, which significantly mitigates accu-
racy drop by preserving task-relevant information during tensor decomposition.
This would allow task-specific compression strategies that prioritize preserving
accuracy for specific applications.

Task/Model Original 8-bit 4-bit 88% 93%
MMLU 46.41 46.03 45.53 45.32 44.16

HellaSwag 80.55 79.77 79.25 77.87 76.54
BoolQ 79.76 78.81 78.19 77.90 76.77

TriviaQA 19.03 19.01 19.00 18.33 18.10
GSM8K 23.05 22.71 22.44 22.58 17.74

Table 2: Accuracies of the models in Table 1 for the MMLU, HellaSwag, BoolQ,
TriviaQA, and GSM8K tasks.

Additionally, tensorized models demonstrated remarkable speedups in both
training and inference. When training the models on the same data, tensorized
models exhibited a 50% acceleration (i.e., twice as fast) compared to the orig-
inal and purely quantized models (see Fig. 2.1). This significant speedup is
attributed to the substantially smaller number of parameters, which reduces the
data transfer time between GPUs and CPUs during distributed training. In
inference, tensorized models achieved over 25% speedup compared to the orig-
inal model (see Fig. 2.2). Conversely, the 4-bit quantized model slowed down
inference by 13%, possibly due to inefficiencies in processing certain quantized
operations on conventional GPUs.

Tr
ai
ni
ng
	T
im
e	
(m
)

10

12

14

16

18

20

22
	

Ori
gina
l

8	B
it

4	B
it

88%
	Co
mpr
esse
d

93%
	Co
mpr
esse
d

	

1. Training time (in minutes) of the
different models on the same amount of
MMLU data used for healing the ten-
sorized models. The tensorized models
show 2× speedup with distributed train-
ing on eight A10g NVIDIA GPUs com-
pared to both the original and purely
quantized models.

In
fe
re
nc
e	
Ti
m
e	
(m
s)

0

0.2

0.4

0.6

0.8

1

1.2

	

MM
LU

Hel
laSw

ag
Boo

lQ
Triv

iaQ
A

GSM
8K

	
Original							 8	Bit							 4	Bit
88%	Compressed							 93%	Compressed

2. Inference time (in milliseconds) of the
different models for measuring the accu-
racies on various tasks. The tensorized
models are 25% faster with distributed in-
ference compared to the original model.
Note that inference time for some quan-
tized models is even higher than that of
the original.

Fig. 2: [Color online] Training and inference times of the different models.

These results highlight the effectiveness of our tensor network compression
method, CompactifAI, in reducing model size and computational costs while
maintaining high accuracy, demonstrating its potential for making LLMs more
efficient and sustainable.

4 Conclusions

We introduced and benchmarked CompactifAI, a novel compression method for
Large Language Models (LLMs) based on quantum-inspired Tensor Networks
(TNs). Our approach decomposes weight matrices in the Self-Attention and
Multi-Layer Perceptron layers into Matrix Product Operators with a control-
lable bond dimension, effectively truncating correlations within the model. The

compression rate is adjustable via the bond dimension, and model accuracy can
be restored with a brief retraining (”healing”) process.

By combining CompactifAI with quantization, we achieved a 93% reduction
in memory size for the LlaMA-2 7B model, reduced the number of parameters by
70%, and accelerated training and inference times by 50% and 25%, respectively,
all with only a small accuracy drop of 2%-3%. This surpasses what is achievable
with other compression techniques and indicates that standard LLMs are heavily
overparameterized.

Our method offers a more refined, controllable, and explainable compression
compared to alternatives like pruning, distillation, quantization, and low-rank
approximations, and it is compatible with these techniques. This work paves
the way for the democratization of LLMs, enabling energy-efficient models that
can be deployed on-premises without reliance on external servers, opening new
possibilities for personalized AI. We believe CompactifAI and TN methods will
play a fundamental role in the development of next-generation AI technology.

References

[1] Samantha Lock. What is AI chatbot phenomenon ChatGPT and could it replace humans?
The Guardian, (5), December 2022.

[2] Hugo et al. Touvron. LlaMA: Open and Efficient Foundation Language Models. 2023.

[3] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. BERT: Pre-training
of Deep Bidirectional Transformers for Language Understanding. 2018.

[4] Ashish et al. Vaswani. Attention is all you need. In I. Guyon, U. Von Luxburg, S. Bengio,
H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett, editors, Advances in Neural
Information Processing Systems, volume 30. Curran Associates, Inc., 2017.

[5] The bigger-is-better approach to AI is running out of road. The Economist, (21), June
2023.

[6] Benoit Jacob et al. Quantization and training of neural networks for efficient integer-
arithmetic-only inference. 2018 IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 2704–2713, 2017.

[7] Geoffrey E. Hinton, Oriol Vinyals, and Jeffrey Dean. Distilling the knowledge in a neural
network. ArXiv, abs/1503.02531, 2015.

[8] Song Han, Jeff Pool, John Tran, and William J. Dally. Learning both weights and con-
nections for efficient neural network. In Neural Information Processing Systems, 2015.

[9] Max Jaderberg, Andrea Vedaldi, and Andrew Zisserman. Speeding up convolutional
neural networks with low rank expansions. ArXiv, abs/1405.3866, 2014.

[10] See also. Multiverse Computing CompactifAI, 2023.

[11] Román Orús. A practical introduction to tensor networks: Matrix product states and
projected entangled pair states. Annals of Physics, 349:117–158, oct 2014.

[12] Alexander Novikov, Dmitry Podoprikhin, Anton Osokin, and Dmitry Vetrov. Tensorizing
neural networks, 2015.

[13] Saeed S Jahromi and Román Orús. Variational tensor neural networks for deep learning.
arXiv preprint arXiv:2211.14657, 2022.

[14] Maolin Wang, Yu Pan, Zenglin Xu, Xiangli Yang, Guangxi Li, and Andrzej Cichocki.
Tensor networks meet neural networks: A survey and future perspectives, 2023.

[15] Leo et al. Gao. A framework for few-shot language model evaluation, 12 2023.

